0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 DependencyGraphProof (⇔)
↳8 QDP
↳9 QDPOrderProof (⇔)
↳10 QDP
↳11 PisEmptyProof (⇔)
↳12 TRUE
f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
true → n__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X
F(X) → IF(X, c, n__f(n__true))
IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__true) → TRUE
f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
true → n__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X
IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__f(X)) → F(activate(X))
F(X) → IF(X, c, n__f(n__true))
ACTIVATE(n__f(X)) → ACTIVATE(X)
f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
true → n__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__f(X)) → F(activate(X))
POL(ACTIVATE(x1)) = 1
POL(F(x1)) = 1
POL(IF(x1, x2, x3)) = x3
POL(activate(x1)) = x1
POL(c) = 0
POL(f(x1)) = 1 + x1
POL(false) = 1
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(n__f(x1)) = 1 + x1
POL(n__true) = 0
POL(true) = 0
IF(false, X, Y) → ACTIVATE(Y)
F(X) → IF(X, c, n__f(n__true))
ACTIVATE(n__f(X)) → ACTIVATE(X)
f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
true → n__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X
ACTIVATE(n__f(X)) → ACTIVATE(X)
f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
true → n__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__f(X)) → ACTIVATE(X)
POL(ACTIVATE(x1)) = 0
POL(n__f(x1)) = 1 + x1
f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
true → n__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X