(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X) → IF(X, c, n__f(n__true))
IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__true) → TRUE

The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__f(X)) → F(activate(X))
F(X) → IF(X, c, n__f(n__true))
ACTIVATE(n__f(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__f(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(ACTIVATE(x1)) = x1   
POL(F(x1)) = 1   
POL(IF(x1, x2, x3)) = x3   
POL(activate(x1)) = 0   
POL(c) = 0   
POL(f(x1)) = 0   
POL(false) = 0   
POL(if(x1, x2, x3)) = 0   
POL(n__f(x1)) = 1 + x1   
POL(n__true) = 0   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__f(X)) → F(activate(X))
F(X) → IF(X, c, n__f(n__true))

The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__f(X)) → F(activate(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(ACTIVATE(x1)) = 1 + x1   
POL(F(x1)) = x1   
POL(IF(x1, x2, x3)) = x1 + x3   
POL(activate(x1)) = x1   
POL(c) = 0   
POL(f(x1)) = x1   
POL(false) = 1   
POL(if(x1, x2, x3)) = x2 + x3   
POL(n__f(x1)) = x1   
POL(n__true) = 0   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

if(false, X, Y) → activate(Y)
activate(n__f(X)) → f(activate(X))
f(X) → if(X, c, n__f(n__true))
activate(n__true) → true
activate(X) → X
f(X) → n__f(X)
if(true, X, Y) → X
truen__true

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(false, X, Y) → ACTIVATE(Y)
F(X) → IF(X, c, n__f(n__true))

The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(10) TRUE