(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(X) → G(X)
G(s(X)) → G(X)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__f(X)) → F(X)
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(s(X)) → G(X)
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
G(s(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(
x0,
x1) =
G(
x1)
Tags:
G has argument tags [1,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(G(x1)) = 0
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
SEL(
x0,
x1,
x2) =
SEL(
x1)
Tags:
SEL has argument tags [0,0,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(SEL(x1, x2)) = 1
POL(activate(x1)) = 1
POL(cons(x1, x2)) = 0
POL(f(x1)) = x1
POL(g(x1)) = 0
POL(n__f(x1)) = 1
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(14) TRUE