(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
ACTIVE(f(g(X), Y)) → F(X, f(g(X), Y))
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
MARK(f(X1, X2)) → F(mark(X1), X2)
MARK(f(X1, X2)) → MARK(X1)
MARK(g(X)) → ACTIVE(g(mark(X)))
MARK(g(X)) → G(mark(X))
MARK(g(X)) → MARK(X)
F(mark(X1), X2) → F(X1, X2)
F(X1, mark(X2)) → F(X1, X2)
F(active(X1), X2) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)
G(mark(X)) → G(X)
G(active(X)) → G(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(active(X)) → G(X)
G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(active(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x0, x1)  =  G(x1)

Tags:
G has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(G(x1)) = 1   
POL(active(x1)) = 1 + x1   
POL(mark(x1)) = x1   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(mark(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x0, x1)  =  G(x1)

Tags:
G has argument tags [1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(G(x1)) = 0   
POL(mark(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X1, mark(X2)) → F(X1, X2)
F(mark(X1), X2) → F(X1, X2)
F(active(X1), X2) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(mark(X1), X2) → F(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1, x2)  =  F(x0, x1)

Tags:
F has argument tags [3,0,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(F(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(mark(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X1, mark(X2)) → F(X1, X2)
F(active(X1), X2) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(X1, mark(X2)) → F(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1, x2)  =  F(x2)

Tags:
F has argument tags [1,2,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(F(x1, x2)) = 1 + x1   
POL(active(x1)) = x1   
POL(mark(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X1), X2) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(active(X1), X2) → F(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1, x2)  =  F(x0, x1)

Tags:
F has argument tags [0,1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(F(x1, x2)) = 1   
POL(active(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X1, active(X2)) → F(X1, X2)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(X1, active(X2)) → F(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1, x2)  =  F(x0, x2)

Tags:
F has argument tags [3,2,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(F(x1, x2)) = 0   
POL(active(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) TRUE

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
MARK(f(X1, X2)) → MARK(X1)
MARK(g(X)) → ACTIVE(g(mark(X)))
MARK(g(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(g(X)) → ACTIVE(g(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0)
ACTIVE(x0, x1)  =  ACTIVE(x1)

Tags:
MARK has argument tags [1,2] and root tag 1
ACTIVE has argument tags [0,1] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(ACTIVE(x1)) = 0   
POL(MARK(x1)) = 1   
POL(active(x1)) = 1   
POL(f(x1, x2)) = 1   
POL(g(x1)) = 0   
POL(mark(x1)) = 0   

The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
MARK(f(X1, X2)) → MARK(X1)
MARK(g(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(f(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
ACTIVE(x0, x1)  =  ACTIVE(x0)

Tags:
MARK has argument tags [2,0] and root tag 0
ACTIVE has argument tags [0,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = x1   
POL(f(x1, x2)) = 1 + x1   
POL(g(x1)) = x1   
POL(mark(x1)) = x1   

The following usable rules [FROCOS05] were oriented:

mark(f(X1, X2)) → active(f(mark(X1), X2))
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(g(X)) → active(g(mark(X)))
f(X1, mark(X2)) → f(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(active(X)) → g(X)
g(mark(X)) → g(X)

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
MARK(g(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
ACTIVE(x0, x1)  =  ACTIVE(x0)

Tags:
MARK has argument tags [3,0] and root tag 0
ACTIVE has argument tags [0,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = x1   
POL(f(x1, x2)) = 1 + x1   
POL(g(x1)) = 1 + x1   
POL(mark(x1)) = x1   

The following usable rules [FROCOS05] were oriented:

mark(f(X1, X2)) → active(f(mark(X1), X2))
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(g(X)) → active(g(mark(X)))
f(X1, mark(X2)) → f(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(active(X)) → g(X)
g(mark(X)) → g(X)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
MARK(g(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(g(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(g(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(MARK(x1)) = 0   
POL(g(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(35) TRUE