(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
ACTIVE(f(g(X), Y)) → F(X, f(g(X), Y))
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
MARK(f(X1, X2)) → F(mark(X1), X2)
MARK(f(X1, X2)) → MARK(X1)
MARK(g(X)) → ACTIVE(g(mark(X)))
MARK(g(X)) → G(mark(X))
MARK(g(X)) → MARK(X)
F(mark(X1), X2) → F(X1, X2)
F(X1, mark(X2)) → F(X1, X2)
F(active(X1), X2) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)
G(mark(X)) → G(X)
G(active(X)) → G(X)
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(active(X)) → G(X)
G(mark(X)) → G(X)
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
G(active(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(
x0,
x1) =
G(
x0,
x1)
Tags:
G has argument tags [1,0] and root tag 0
Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
G(
x1) =
G
active(
x1) =
active(
x1)
mark(
x1) =
x1
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial
Status:
G: []
active1: [1]
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(mark(X)) → G(X)
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
G(mark(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(
x0,
x1) =
G(
x0)
Tags:
G has argument tags [0,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
G(
x1) =
x1
mark(
x1) =
mark(
x1)
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial
Status:
mark1: [1]
The following usable rules [FROCOS05] were oriented:
none
(9) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(11) TRUE
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(X1, mark(X2)) → F(X1, X2)
F(mark(X1), X2) → F(X1, X2)
F(active(X1), X2) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(X1, mark(X2)) → F(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x0,
x1,
x2) =
F(
x0)
Tags:
F has argument tags [0,2,2] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(
x1,
x2) =
x2
mark(
x1) =
mark(
x1)
active(
x1) =
x1
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial
Status:
mark1: [1]
The following usable rules [FROCOS05] were oriented:
none
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(mark(X1), X2) → F(X1, X2)
F(active(X1), X2) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(mark(X1), X2) → F(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x0,
x1,
x2) =
F(
x0)
Tags:
F has argument tags [0,2,3] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(
x1,
x2) =
F(
x1,
x2)
mark(
x1) =
mark(
x1)
active(
x1) =
x1
Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > F2
Status:
F2: [2,1]
mark1: [1]
The following usable rules [FROCOS05] were oriented:
none
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(active(X1), X2) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(active(X1), X2) → F(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x0,
x1,
x2) =
F(
x0)
Tags:
F has argument tags [2,0,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(
x1,
x2) =
x1
active(
x1) =
active(
x1)
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial
Status:
active1: [1]
The following usable rules [FROCOS05] were oriented:
none
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(X1, active(X2)) → F(X1, X2)
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(X1, active(X2)) → F(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x0,
x1,
x2) =
F(
x0,
x2)
Tags:
F has argument tags [2,3,3] and root tag 0
Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(
x1,
x2) =
F(
x1)
active(
x1) =
active(
x1)
Lexicographic path order with status [LPO].
Quasi-Precedence:
[F1, active1]
Status:
F1: [1]
active1: [1]
The following usable rules [FROCOS05] were oriented:
none
(20) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(22) TRUE
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
MARK(f(X1, X2)) → MARK(X1)
MARK(g(X)) → ACTIVE(g(mark(X)))
MARK(g(X)) → MARK(X)
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(24) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
ACTIVE(f(g(X), Y)) → MARK(f(X, f(g(X), Y)))
MARK(g(X)) → ACTIVE(g(mark(X)))
MARK(g(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(
x0,
x1) =
MARK(
x0,
x1)
ACTIVE(
x0,
x1) =
ACTIVE(
x0,
x1)
Tags:
MARK has argument tags [0,0] and root tag 0
ACTIVE has argument tags [0,3] and root tag 1
Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(
x1) =
MARK(
x1)
f(
x1,
x2) =
x1
ACTIVE(
x1) =
x1
mark(
x1) =
x1
g(
x1) =
g(
x1)
active(
x1) =
x1
Lexicographic path order with status [LPO].
Quasi-Precedence:
MARK1 > g1
Status:
MARK1: [1]
g1: [1]
The following usable rules [FROCOS05] were oriented:
mark(f(X1, X2)) → active(f(mark(X1), X2))
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(g(X)) → active(g(mark(X)))
f(X1, mark(X2)) → f(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(active(X)) → g(X)
g(mark(X)) → g(X)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(f(X1, X2)) → MARK(X1)
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MARK(f(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(
x0,
x1) =
MARK(
x0)
Tags:
MARK has argument tags [0,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(
x1) =
x1
f(
x1,
x2) =
f(
x1,
x2)
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial
Status:
f2: [2,1]
The following usable rules [FROCOS05] were oriented:
none
(27) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(29) TRUE