(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__F(g(X), Y) → A__F(mark(X), f(g(X), Y))
A__F(g(X), Y) → MARK(X)
MARK(f(X1, X2)) → A__F(mark(X1), X2)
MARK(f(X1, X2)) → MARK(X1)
MARK(g(X)) → MARK(X)
The TRS R consists of the following rules:
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) QDPSizeChangeProof (EQUIVALENT transformation)
We used the following order together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.
Order:Polynomial interpretation [POLO]:
POL(a__f(x1, x2)) = 1 + x1
POL(f(x1, x2)) = 1 + x1
POL(g(x1)) = 1 + x1
POL(mark(x1)) = x1
From the DPs we obtained the following set of size-change graphs:
- A__F(g(X), Y) → A__F(mark(X), f(g(X), Y)) (allowed arguments on rhs = {1, 2})
The graph contains the following edges 1 > 1
- A__F(g(X), Y) → MARK(X) (allowed arguments on rhs = {1})
The graph contains the following edges 1 > 1
- MARK(f(X1, X2)) → A__F(mark(X1), X2) (allowed arguments on rhs = {1, 2})
The graph contains the following edges 1 > 1
- MARK(f(X1, X2)) → MARK(X1) (allowed arguments on rhs = {1})
The graph contains the following edges 1 > 1
- MARK(g(X)) → MARK(X) (allowed arguments on rhs = {1})
The graph contains the following edges 1 > 1
We oriented the following set of usable rules [AAECC05,FROCOS05].
mark(g(X)) → g(mark(X))
mark(f(X1, X2)) → a__f(mark(X1), X2)
a__f(X1, X2) → f(X1, X2)
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
(4) TRUE