0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPSizeChangeProof (⇔)
↳4 TRUE
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
A__F(g(X), Y) → A__F(mark(X), f(g(X), Y))
A__F(g(X), Y) → MARK(X)
MARK(f(X1, X2)) → A__F(mark(X1), X2)
MARK(f(X1, X2)) → MARK(X1)
MARK(g(X)) → MARK(X)
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(X1, X2) → f(X1, X2)
Order:Combined order from the following AFS and order.
mark(x1) = x1
f(x1, x2) = f(x1)
a__f(x1, x2) = a__f(x1)
g(x1) = g(x1)
Lexicographic path order with status [LPO].
Quasi-Precedence:
[f1, af1] > g1
f1: [1]
af1: [1]
g1: [1]
AFS:
mark(x1) = x1
f(x1, x2) = f(x1)
a__f(x1, x2) = a__f(x1)
g(x1) = g(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(g(X)) → g(mark(X))
a__f(g(X), Y) → a__f(mark(X), f(g(X), Y))
a__f(X1, X2) → f(X1, X2)