0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 TRUE
↳14 QDP
↳15 QDPSizeChangeProof (⇔)
↳16 TRUE
↳17 QDP
↳18 QDPSizeChangeProof (⇔)
↳19 TRUE
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
ACTIVE(f(g(X), Y)) → F(X, f(g(X), Y))
ACTIVE(f(X1, X2)) → F(active(X1), X2)
ACTIVE(f(X1, X2)) → ACTIVE(X1)
ACTIVE(g(X)) → G(active(X))
ACTIVE(g(X)) → ACTIVE(X)
F(mark(X1), X2) → F(X1, X2)
G(mark(X)) → G(X)
PROPER(f(X1, X2)) → F(proper(X1), proper(X2))
PROPER(f(X1, X2)) → PROPER(X1)
PROPER(f(X1, X2)) → PROPER(X2)
PROPER(g(X)) → G(proper(X))
PROPER(g(X)) → PROPER(X)
F(ok(X1), ok(X2)) → F(X1, X2)
G(ok(X)) → G(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
G(ok(X)) → G(X)
G(mark(X)) → G(X)
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Order:Homeomorphic Embedding Order
AFS:
mark(x1) = mark(x1)
ok(x1) = ok(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
F(ok(X1), ok(X2)) → F(X1, X2)
F(mark(X1), X2) → F(X1, X2)
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Order:Homeomorphic Embedding Order
AFS:
mark(x1) = mark(x1)
ok(x1) = ok(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
PROPER(f(X1, X2)) → PROPER(X2)
PROPER(f(X1, X2)) → PROPER(X1)
PROPER(g(X)) → PROPER(X)
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Order:Homeomorphic Embedding Order
AFS:
g(x1) = g(x1)
f(x1, x2) = f(x1, x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
ACTIVE(g(X)) → ACTIVE(X)
ACTIVE(f(X1, X2)) → ACTIVE(X1)
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Order:Homeomorphic Embedding Order
AFS:
g(x1) = g(x1)
f(x1, x2) = f(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Order:Combined order from the following AFS and order.
active(x1) = x1
f(x1, x2) = f(x1)
g(x1) = g(x1)
mark(x1) = mark(x1)
proper(x1) = x1
ok(x1) = ok(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[f1, g1] > mark1 > ok1
f1: multiset
g1: multiset
mark1: multiset
ok1: multiset
AFS:
active(x1) = x1
f(x1, x2) = f(x1)
g(x1) = g(x1)
mark(x1) = mark(x1)
proper(x1) = x1
ok(x1) = ok(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
g(mark(X)) → mark(g(X))
g(ok(X)) → ok(g(X))
f(mark(X1), X2) → mark(f(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))