(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__DIV(s(X), s(Y)) → A__GEQ(X, Y)
A__IF(true, X, Y) → MARK(X)
A__IF(false, X, Y) → MARK(Y)
MARK(minus(X1, X2)) → A__MINUS(X1, X2)
MARK(geq(X1, X2)) → A__GEQ(X1, X2)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__GEQ(x0, x1, x2)  =  A__GEQ(x0, x1, x2)

Tags:
A__GEQ has argument tags [2,3,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__GEQ(x1, x2)) = 1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__MINUS(x0, x1, x2)  =  A__MINUS(x0, x1, x2)

Tags:
A__MINUS has argument tags [2,3,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__MINUS(x1, x2)) = 1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(true, X, Y) → MARK(X)
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__IF(false, X, Y) → MARK(Y)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(div(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0)
A__DIV(x0, x1, x2)  =  A__DIV(x0, x1)
A__IF(x0, x1, x2, x3)  =  A__IF(x0, x1, x2, x3)

Tags:
MARK has argument tags [14,15] and root tag 0
A__DIV has argument tags [14,1,7] and root tag 0
A__IF has argument tags [14,1,14,14] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__DIV(x1, x2)) = 1   
POL(A__IF(x1, x2, x3)) = 0   
POL(MARK(x1)) = x1   
POL(a__div(x1, x2)) = 1 + x1   
POL(a__geq(x1, x2)) = x1   
POL(a__if(x1, x2, x3)) = x1 + x2 + x3   
POL(a__minus(x1, x2)) = 0   
POL(div(x1, x2)) = 1 + x1   
POL(false) = 0   
POL(geq(x1, x2)) = x1   
POL(if(x1, x2, x3)) = x1 + x2 + x3   
POL(mark(x1)) = x1   
POL(minus(x1, x2)) = 0   
POL(s(x1)) = x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(true, X, Y) → MARK(X)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__IF(false, X, Y) → MARK(Y)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(if(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
A__DIV(x0, x1, x2)  =  A__DIV(x0)
A__IF(x0, x1, x2, x3)  =  A__IF(x0, x2, x3)

Tags:
MARK has argument tags [0,2] and root tag 0
A__DIV has argument tags [2,8,8] and root tag 0
A__IF has argument tags [2,7,2,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__DIV(x1, x2)) = 1 + x2   
POL(A__IF(x1, x2, x3)) = 1   
POL(MARK(x1)) = 1   
POL(a__div(x1, x2)) = x2   
POL(a__geq(x1, x2)) = 1 + x2   
POL(a__if(x1, x2, x3)) = x1   
POL(a__minus(x1, x2)) = 1 + x2   
POL(div(x1, x2)) = 1 + x2   
POL(false) = 0   
POL(geq(x1, x2)) = 1 + x1   
POL(if(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(mark(x1)) = 0   
POL(minus(x1, x2)) = 0   
POL(s(x1)) = x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(true, X, Y) → MARK(X)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__IF(false, X, Y) → MARK(Y)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0)
A__DIV(x0, x1, x2)  =  A__DIV(x2)
A__IF(x0, x1, x2, x3)  =  A__IF(x2, x3)

Tags:
MARK has argument tags [0,2] and root tag 0
A__DIV has argument tags [1,2,0] and root tag 0
A__IF has argument tags [8,15,0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__DIV(x1, x2)) = x1   
POL(A__IF(x1, x2, x3)) = 0   
POL(MARK(x1)) = x1   
POL(a__div(x1, x2)) = 1 + x2   
POL(a__geq(x1, x2)) = 0   
POL(a__if(x1, x2, x3)) = 1 + x2 + x3   
POL(a__minus(x1, x2)) = x2   
POL(div(x1, x2)) = x2   
POL(false) = 0   
POL(geq(x1, x2)) = 0   
POL(if(x1, x2, x3)) = 1 + x2 + x3   
POL(mark(x1)) = 1 + x1   
POL(minus(x1, x2)) = x2   
POL(s(x1)) = x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
a__if(false, X, Y) → mark(Y)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__geq(X1, X2) → geq(X1, X2)
a__div(0, s(Y)) → 0
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__minus(X1, X2) → minus(X1, X2)

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(true, X, Y) → MARK(X)
A__IF(false, X, Y) → MARK(Y)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__IF(false, X, Y) → MARK(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
A__DIV(x0, x1, x2)  =  A__DIV(x0)
A__IF(x0, x1, x2, x3)  =  A__IF(x0, x2)

Tags:
MARK has argument tags [4,0] and root tag 0
A__DIV has argument tags [0,8,8] and root tag 0
A__IF has argument tags [0,4,0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__DIV(x1, x2)) = 1 + x2   
POL(A__IF(x1, x2, x3)) = 1 + x3   
POL(MARK(x1)) = 0   
POL(a__div(x1, x2)) = x1   
POL(a__geq(x1, x2)) = 0   
POL(a__if(x1, x2, x3)) = 1 + x3   
POL(a__minus(x1, x2)) = 0   
POL(div(x1, x2)) = 1 + x2   
POL(false) = 0   
POL(geq(x1, x2)) = 1   
POL(if(x1, x2, x3)) = x1 + x2   
POL(mark(x1)) = x1   
POL(minus(x1, x2)) = 0   
POL(s(x1)) = x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(true, X, Y) → MARK(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0)
A__DIV(x0, x1, x2)  =  A__DIV(x0)
A__IF(x0, x1, x2, x3)  =  A__IF(x0, x2)

Tags:
MARK has argument tags [0,0] and root tag 0
A__DIV has argument tags [0,2,0] and root tag 0
A__IF has argument tags [0,3,0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__DIV(x1, x2)) = x1   
POL(A__IF(x1, x2, x3)) = x1   
POL(MARK(x1)) = x1   
POL(a__div(x1, x2)) = x1   
POL(a__geq(x1, x2)) = 1 + x1   
POL(a__if(x1, x2, x3)) = x2 + x3   
POL(a__minus(x1, x2)) = x1   
POL(div(x1, x2)) = x1   
POL(false) = 0   
POL(geq(x1, x2)) = 1 + x1   
POL(if(x1, x2, x3)) = x2 + x3   
POL(mark(x1)) = x1   
POL(minus(x1, x2)) = x1   
POL(s(x1)) = 1 + x1   
POL(true) = 1   

The following usable rules [FROCOS05] were oriented:

mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
a__if(false, X, Y) → mark(Y)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__geq(X1, X2) → geq(X1, X2)
a__div(0, s(Y)) → 0
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__minus(X1, X2) → minus(X1, X2)

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(true, X, Y) → MARK(X)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(true, X, Y) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
A__DIV(x0, x1, x2)  =  A__DIV(x0)
A__IF(x0, x1, x2, x3)  =  A__IF(x1, x2)

Tags:
MARK has argument tags [13,2] and root tag 1
A__DIV has argument tags [2,1,0] and root tag 1
A__IF has argument tags [13,2,10,11] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 1   
POL(A__DIV(x1, x2)) = 1   
POL(A__IF(x1, x2, x3)) = x3   
POL(MARK(x1)) = 1 + x1   
POL(a__div(x1, x2)) = x2   
POL(a__geq(x1, x2)) = 1   
POL(a__if(x1, x2, x3)) = 0   
POL(a__minus(x1, x2)) = 1 + x2   
POL(div(x1, x2)) = 1 + x1   
POL(false) = 0   
POL(geq(x1, x2)) = 1   
POL(if(x1, x2, x3)) = 1 + x1 + x2   
POL(mark(x1)) = x1   
POL(minus(x1, x2)) = x1   
POL(s(x1)) = 0   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(X1, X2)) → A__DIV(mark(X1), X2)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(29) TRUE