0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 PisEmptyProof (⇔)
↳9 TRUE
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 PisEmptyProof (⇔)
↳14 TRUE
↳15 QDP
↳16 QDPOrderProof (⇔)
↳17 QDP
↳18 QDPOrderProof (⇔)
↳19 QDP
↳20 QDPOrderProof (⇔)
↳21 QDP
↳22 QDPOrderProof (⇔)
↳23 QDP
↳24 PisEmptyProof (⇔)
↳25 TRUE
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__DIV(s(X), s(Y)) → A__GEQ(X, Y)
A__IF(true, X, Y) → MARK(X)
A__IF(false, X, Y) → MARK(Y)
MARK(minus(X1, X2)) → A__MINUS(X1, X2)
MARK(geq(X1, X2)) → A__GEQ(X1, X2)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
POL(A__GEQ(x1, x2)) = 1
POL(s(x1)) = 1 + x1
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
POL(A__MINUS(x1, x2)) = 1
POL(s(x1)) = 1 + x1
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(true, X, Y) → MARK(X)
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__IF(false, X, Y) → MARK(Y)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(div(X1, X2)) → MARK(X1)
POL(0) = 0
POL(A__DIV(x1, x2)) = 1 + x1
POL(A__IF(x1, x2, x3)) = 1 + x1 + x3
POL(MARK(x1)) = x1
POL(a__div(x1, x2)) = 1 + x1
POL(a__geq(x1, x2)) = x1
POL(a__if(x1, x2, x3)) = x1 + x2 + x3
POL(a__minus(x1, x2)) = 0
POL(div(x1, x2)) = 1 + x1
POL(false) = 0
POL(geq(x1, x2)) = x1
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = x1
POL(true) = 0
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
a__if(false, X, Y) → mark(Y)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__geq(X1, X2) → geq(X1, X2)
a__div(0, s(Y)) → 0
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__minus(X1, X2) → minus(X1, X2)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(true, X, Y) → MARK(X)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__IF(false, X, Y) → MARK(Y)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(s(X)) → MARK(X)
POL(0) = 0
POL(A__DIV(x1, x2)) = x1
POL(A__IF(x1, x2, x3)) = x2 + x3
POL(MARK(x1)) = x1
POL(a__div(x1, x2)) = x1
POL(a__geq(x1, x2)) = 0
POL(a__if(x1, x2, x3)) = x1 + x2 + x3
POL(a__minus(x1, x2)) = 0
POL(div(x1, x2)) = x1
POL(false) = 0
POL(geq(x1, x2)) = 0
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = 1 + x1
POL(true) = 0
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
a__if(false, X, Y) → mark(Y)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__geq(X1, X2) → geq(X1, X2)
a__div(0, s(Y)) → 0
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__minus(X1, X2) → minus(X1, X2)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(true, X, Y) → MARK(X)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__IF(false, X, Y) → MARK(Y)
MARK(if(X1, X2, X3)) → MARK(X1)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(true, X, Y) → MARK(X)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__IF(false, X, Y) → MARK(Y)
POL(0) = 0
POL(A__DIV(x1, x2)) = x1 + x2
POL(A__IF(x1, x2, x3)) = x1 + x2 + x3
POL(MARK(x1)) = 1
POL(a__div(x1, x2)) = 1 + x1 + x2
POL(a__geq(x1, x2)) = 1
POL(a__if(x1, x2, x3)) = x1 + x2 + x3
POL(a__minus(x1, x2)) = 0
POL(div(x1, x2)) = 1 + x1 + x2
POL(false) = 1
POL(geq(x1, x2)) = 1
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = 1
POL(true) = 1
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
a__if(false, X, Y) → mark(Y)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__geq(X1, X2) → geq(X1, X2)
a__div(0, s(Y)) → 0
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__minus(X1, X2) → minus(X1, X2)
MARK(if(X1, X2, X3)) → MARK(X1)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(if(X1, X2, X3)) → MARK(X1)
POL(MARK(x1)) = 1
POL(if(x1, x2, x3)) = 1 + x1
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)