0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPSizeChangeProof (⇔)
↳6 TRUE
a__fst(0, Z) → nil
a__fst(s(X), cons(Y, Z)) → cons(mark(Y), fst(X, Z))
a__from(X) → cons(mark(X), from(s(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__len(nil) → 0
a__len(cons(X, Z)) → s(len(Z))
mark(fst(X1, X2)) → a__fst(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(len(X)) → a__len(mark(X))
mark(0) → 0
mark(s(X)) → s(X)
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__fst(X1, X2) → fst(X1, X2)
a__from(X) → from(X)
a__add(X1, X2) → add(X1, X2)
a__len(X) → len(X)
A__FST(s(X), cons(Y, Z)) → MARK(Y)
A__FROM(X) → MARK(X)
A__ADD(0, X) → MARK(X)
MARK(fst(X1, X2)) → A__FST(mark(X1), mark(X2))
MARK(fst(X1, X2)) → MARK(X1)
MARK(fst(X1, X2)) → MARK(X2)
MARK(from(X)) → A__FROM(mark(X))
MARK(from(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(len(X)) → A__LEN(mark(X))
MARK(len(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
a__fst(0, Z) → nil
a__fst(s(X), cons(Y, Z)) → cons(mark(Y), fst(X, Z))
a__from(X) → cons(mark(X), from(s(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__len(nil) → 0
a__len(cons(X, Z)) → s(len(Z))
mark(fst(X1, X2)) → a__fst(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(len(X)) → a__len(mark(X))
mark(0) → 0
mark(s(X)) → s(X)
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__fst(X1, X2) → fst(X1, X2)
a__from(X) → from(X)
a__add(X1, X2) → add(X1, X2)
a__len(X) → len(X)
MARK(fst(X1, X2)) → A__FST(mark(X1), mark(X2))
A__FST(s(X), cons(Y, Z)) → MARK(Y)
MARK(fst(X1, X2)) → MARK(X1)
MARK(fst(X1, X2)) → MARK(X2)
MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(0, X) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(len(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
a__fst(0, Z) → nil
a__fst(s(X), cons(Y, Z)) → cons(mark(Y), fst(X, Z))
a__from(X) → cons(mark(X), from(s(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__len(nil) → 0
a__len(cons(X, Z)) → s(len(Z))
mark(fst(X1, X2)) → a__fst(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(len(X)) → a__len(mark(X))
mark(0) → 0
mark(s(X)) → s(X)
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__fst(X1, X2) → fst(X1, X2)
a__from(X) → from(X)
a__add(X1, X2) → add(X1, X2)
a__len(X) → len(X)
Order:Polynomial interpretation [POLO]:
POL(0) = 1
POL(a__add(x1, x2)) = 1 + x1 + x2
POL(a__from(x1)) = 1 + x1
POL(a__fst(x1, x2)) = 1 + x1 + x2
POL(a__len(x1)) = 1 + x1
POL(add(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = 1 + x1
POL(from(x1)) = 1 + x1
POL(fst(x1, x2)) = 1 + x1 + x2
POL(len(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = 1
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
mark(s(X)) → s(X)
mark(nil) → nil
mark(len(X)) → a__len(mark(X))
mark(fst(X1, X2)) → a__fst(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(0) → 0
a__len(X) → len(X)
a__len(nil) → 0
a__len(cons(X, Z)) → s(len(Z))
a__fst(X1, X2) → fst(X1, X2)
a__fst(s(X), cons(Y, Z)) → cons(mark(Y), fst(X, Z))
a__fst(0, Z) → nil
a__from(X) → from(X)
a__from(X) → cons(mark(X), from(s(X)))
a__add(X1, X2) → add(X1, X2)
a__add(s(X), Y) → s(add(X, Y))
a__add(0, X) → mark(X)