(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__fst(0, Z) → nil
a__fst(s(X), cons(Y, Z)) → cons(mark(Y), fst(X, Z))
a__from(X) → cons(mark(X), from(s(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__len(nil) → 0
a__len(cons(X, Z)) → s(len(Z))
mark(fst(X1, X2)) → a__fst(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(len(X)) → a__len(mark(X))
mark(0) → 0
mark(s(X)) → s(X)
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__fst(X1, X2) → fst(X1, X2)
a__from(X) → from(X)
a__add(X1, X2) → add(X1, X2)
a__len(X) → len(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__FST(s(X), cons(Y, Z)) → MARK(Y)
A__FROM(X) → MARK(X)
A__ADD(0, X) → MARK(X)
MARK(fst(X1, X2)) → A__FST(mark(X1), mark(X2))
MARK(fst(X1, X2)) → MARK(X1)
MARK(fst(X1, X2)) → MARK(X2)
MARK(from(X)) → A__FROM(mark(X))
MARK(from(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(len(X)) → A__LEN(mark(X))
MARK(len(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__fst(0, Z) → nil
a__fst(s(X), cons(Y, Z)) → cons(mark(Y), fst(X, Z))
a__from(X) → cons(mark(X), from(s(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__len(nil) → 0
a__len(cons(X, Z)) → s(len(Z))
mark(fst(X1, X2)) → a__fst(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(len(X)) → a__len(mark(X))
mark(0) → 0
mark(s(X)) → s(X)
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__fst(X1, X2) → fst(X1, X2)
a__from(X) → from(X)
a__add(X1, X2) → add(X1, X2)
a__len(X) → len(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(fst(X1, X2)) → A__FST(mark(X1), mark(X2))
A__FST(s(X), cons(Y, Z)) → MARK(Y)
MARK(fst(X1, X2)) → MARK(X1)
MARK(fst(X1, X2)) → MARK(X2)
MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
A__ADD(0, X) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(len(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__fst(0, Z) → nil
a__fst(s(X), cons(Y, Z)) → cons(mark(Y), fst(X, Z))
a__from(X) → cons(mark(X), from(s(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__len(nil) → 0
a__len(cons(X, Z)) → s(len(Z))
mark(fst(X1, X2)) → a__fst(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(len(X)) → a__len(mark(X))
mark(0) → 0
mark(s(X)) → s(X)
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__fst(X1, X2) → fst(X1, X2)
a__from(X) → from(X)
a__add(X1, X2) → add(X1, X2)
a__len(X) → len(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(fst(X1, X2)) → A__FST(mark(X1), mark(X2))
A__FST(s(X), cons(Y, Z)) → MARK(Y)
MARK(fst(X1, X2)) → MARK(X1)
MARK(fst(X1, X2)) → MARK(X2)
MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(len(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x1)  =  MARK(x1)
A__FST(x1, x2)  =  A__FST(x2)
A__FROM(x1)  =  A__FROM(x1)
A__ADD(x1, x2)  =  A__ADD(x2)

Tags:
MARK has tags [2]
A__FST has tags [6,4]
A__FROM has tags [5]
A__ADD has tags [5,2]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
fst(x1, x2)  =  fst(x1, x2)
mark(x1)  =  x1
s(x1)  =  s
cons(x1, x2)  =  cons(x1)
from(x1)  =  from(x1)
add(x1, x2)  =  add(x1, x2)
0  =  0
len(x1)  =  len(x1)
a__fst(x1, x2)  =  a__fst(x1, x2)
a__from(x1)  =  a__from(x1)
a__add(x1, x2)  =  a__add(x1, x2)
a__len(x1)  =  a__len(x1)
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
[fst2, cons1, from1, len1, afst2, afrom1, alen1] > 0 > nil > s
[add2, aadd2] > s

Status:
fst2: [2,1]
s: []
cons1: [1]
from1: [1]
add2: [1,2]
0: []
len1: [1]
afst2: [2,1]
afrom1: [1]
aadd2: [1,2]
alen1: [1]
nil: []


The following usable rules [FROCOS05] were oriented:

mark(fst(X1, X2)) → a__fst(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(len(X)) → a__len(mark(X))
mark(0) → 0
mark(s(X)) → s(X)
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__from(X) → cons(mark(X), from(s(X)))
a__fst(s(X), cons(Y, Z)) → cons(mark(Y), fst(X, Z))
a__from(X) → from(X)
a__fst(0, Z) → nil
a__fst(X1, X2) → fst(X1, X2)
a__add(s(X), Y) → s(add(X, Y))
a__add(X1, X2) → add(X1, X2)
a__len(nil) → 0
a__len(cons(X, Z)) → s(len(Z))
a__len(X) → len(X)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ADD(0, X) → MARK(X)

The TRS R consists of the following rules:

a__fst(0, Z) → nil
a__fst(s(X), cons(Y, Z)) → cons(mark(Y), fst(X, Z))
a__from(X) → cons(mark(X), from(s(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__len(nil) → 0
a__len(cons(X, Z)) → s(len(Z))
mark(fst(X1, X2)) → a__fst(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(len(X)) → a__len(mark(X))
mark(0) → 0
mark(s(X)) → s(X)
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__fst(X1, X2) → fst(X1, X2)
a__from(X) → from(X)
a__add(X1, X2) → add(X1, X2)
a__len(X) → len(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(8) TRUE