(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(s(X), cons(Y, Z)) → ACTIVATE(X)
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ADD(s(X), Y) → S(n__add(activate(X), Y))
ADD(s(X), Y) → ACTIVATE(X)
LEN(cons(X, Z)) → S(n__len(activate(Z)))
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__len(X)) → LEN(activate(X))
ACTIVATE(n__len(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))
FST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__len(X)) → LEN(activate(X))
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__len(X)) → ACTIVATE(X)
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))
FST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x0, x1)
FST(x0, x1, x2)  =  FST(x0, x1)
ADD(x0, x1, x2)  =  ADD(x0)
LEN(x0, x1)  =  LEN(x1)

Tags:
ACTIVATE has argument tags [9,8] and root tag 0
FST has argument tags [9,9,7] and root tag 3
ADD has argument tags [9,2,6] and root tag 3
LEN has argument tags [0,9] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__fst(x1, x2)  =  n__fst(x1, x2)
FST(x1, x2)  =  x2
activate(x1)  =  x1
s(x1)  =  x1
cons(x1, x2)  =  x2
n__from(x1)  =  x1
n__add(x1, x2)  =  n__add(x1, x2)
ADD(x1, x2)  =  x1
n__len(x1)  =  x1
LEN(x1)  =  LEN
fst(x1, x2)  =  fst(x1, x2)
from(x1)  =  x1
n__s(x1)  =  x1
add(x1, x2)  =  add(x1, x2)
len(x1)  =  x1
0  =  0
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
[nfst2, fst2] > nil > 0 > [nadd2, add2]
LEN > [nadd2, add2]

Status:
nfst2: multiset
nadd2: [1,2]
LEN: multiset
fst2: multiset
add2: [1,2]
0: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
add(s(X), Y) → s(n__add(activate(X), Y))
len(cons(X, Z)) → s(n__len(activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
fst(0, Z) → nil
fst(X1, X2) → n__fst(X1, X2)
add(0, X) → X
add(X1, X2) → n__add(X1, X2)
len(nil) → 0
len(X) → n__len(X)
s(X) → n__s(X)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__len(X)) → LEN(activate(X))
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__len(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__len(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x0)
LEN(x0, x1)  =  LEN(x0, x1)

Tags:
ACTIVATE has argument tags [1,3] and root tag 0
LEN has argument tags [2,1] and root tag 0

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__from(x1)  =  x1
n__len(x1)  =  n__len(x1)
LEN(x1)  =  x1
activate(x1)  =  activate(x1)
cons(x1, x2)  =  x2
n__fst(x1, x2)  =  n__fst
fst(x1, x2)  =  fst
from(x1)  =  x1
n__s(x1)  =  n__s
s(x1)  =  s
n__add(x1, x2)  =  n__add(x1, x2)
add(x1, x2)  =  add(x1, x2)
len(x1)  =  len(x1)
0  =  0
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
[nlen1, activate1, len1, 0] > fst > nfst > ns
[nlen1, activate1, len1, 0] > fst > nil > ns
[nlen1, activate1, len1, 0] > [nadd2, add2] > s > nfst > ns

Status:
nlen1: [1]
activate1: [1]
nfst: multiset
fst: multiset
ns: multiset
s: multiset
nadd2: multiset
add2: multiset
len1: [1]
0: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
add(s(X), Y) → s(n__add(activate(X), Y))
len(cons(X, Z)) → s(n__len(activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
fst(0, Z) → nil
fst(X1, X2) → n__fst(X1, X2)
add(0, X) → X
add(X1, X2) → n__add(X1, X2)
len(nil) → 0
len(X) → n__len(X)
s(X) → n__s(X)

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__len(X)) → LEN(activate(X))
LEN(cons(X, Z)) → ACTIVATE(Z)

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__from(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x0)
LEN(x0, x1)  =  LEN(x0, x1)

Tags:
ACTIVATE has argument tags [0,0] and root tag 0
LEN has argument tags [0,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__from(x1)  =  n__from(x1)
n__len(x1)  =  x1
LEN(x1)  =  LEN(x1)
activate(x1)  =  x1
cons(x1, x2)  =  x2
n__fst(x1, x2)  =  x2
fst(x1, x2)  =  x2
from(x1)  =  from(x1)
n__s(x1)  =  x1
s(x1)  =  x1
n__add(x1, x2)  =  n__add(x1, x2)
add(x1, x2)  =  add(x1, x2)
len(x1)  =  x1
0  =  0
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
[nfrom1, from1] > [ACTIVATE1, LEN1] > [0, nil]
[nadd2, add2] > [0, nil]

Status:
ACTIVATE1: multiset
nfrom1: [1]
LEN1: multiset
from1: [1]
nadd2: [1,2]
add2: [1,2]
0: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
add(s(X), Y) → s(n__add(activate(X), Y))
len(cons(X, Z)) → s(n__len(activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
fst(0, Z) → nil
fst(X1, X2) → n__fst(X1, X2)
add(0, X) → X
add(X1, X2) → n__add(X1, X2)
len(nil) → 0
len(X) → n__len(X)
s(X) → n__s(X)

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__len(X)) → LEN(activate(X))
LEN(cons(X, Z)) → ACTIVATE(Z)

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__len(X)) → LEN(activate(X))
LEN(cons(X, Z)) → ACTIVATE(Z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x0, x1)
LEN(x0, x1)  =  LEN(x1)

Tags:
ACTIVATE has argument tags [0,2] and root tag 1
LEN has argument tags [1,2] and root tag 0

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__len(x1)  =  n__len(x1)
LEN(x1)  =  LEN(x1)
activate(x1)  =  activate(x1)
cons(x1, x2)  =  cons(x2)
n__fst(x1, x2)  =  n__fst
fst(x1, x2)  =  fst
n__from(x1)  =  n__from
from(x1)  =  from
n__s(x1)  =  n__s
s(x1)  =  s
n__add(x1, x2)  =  n__add(x1, x2)
add(x1, x2)  =  add(x1, x2)
len(x1)  =  len(x1)
0  =  0
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVATE1, nlen1, LEN1, activate1, s, nadd2, add2, len1] > [fst, nil] > [cons1, nfst]
[ACTIVATE1, nlen1, LEN1, activate1, s, nadd2, add2, len1] > [fst, nil] > 0
[ACTIVATE1, nlen1, LEN1, activate1, s, nadd2, add2, len1] > from > [cons1, nfst]
[ACTIVATE1, nlen1, LEN1, activate1, s, nadd2, add2, len1] > from > nfrom
[ACTIVATE1, nlen1, LEN1, activate1, s, nadd2, add2, len1] > from > ns

Status:
ACTIVATE1: [1]
nlen1: multiset
LEN1: multiset
activate1: multiset
cons1: multiset
nfst: multiset
fst: multiset
nfrom: multiset
from: multiset
ns: []
s: multiset
nadd2: multiset
add2: multiset
len1: multiset
0: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
add(s(X), Y) → s(n__add(activate(X), Y))
len(cons(X, Z)) → s(n__len(activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
fst(0, Z) → nil
fst(X1, X2) → n__fst(X1, X2)
add(0, X) → X
add(X1, X2) → n__add(X1, X2)
len(nil) → 0
len(X) → n__len(X)
s(X) → n__s(X)

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE