(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(s(X), cons(Y, Z))) → CONS(Y, fst(X, Z))
ACTIVE(fst(s(X), cons(Y, Z))) → FST(X, Z)
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(from(X)) → S(X)
ACTIVE(add(s(X), Y)) → S(add(X, Y))
ACTIVE(add(s(X), Y)) → ADD(X, Y)
ACTIVE(len(cons(X, Z))) → S(len(Z))
ACTIVE(len(cons(X, Z))) → LEN(Z)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(fst(X1, X2)) → FST(active(X1), X2)
ACTIVE(fst(X1, X2)) → ACTIVE(X1)
ACTIVE(fst(X1, X2)) → FST(X1, active(X2))
ACTIVE(fst(X1, X2)) → ACTIVE(X2)
ACTIVE(from(X)) → FROM(active(X))
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(add(X1, X2)) → ADD(active(X1), X2)
ACTIVE(add(X1, X2)) → ACTIVE(X1)
ACTIVE(add(X1, X2)) → ADD(X1, active(X2))
ACTIVE(add(X1, X2)) → ACTIVE(X2)
ACTIVE(len(X)) → LEN(active(X))
ACTIVE(len(X)) → ACTIVE(X)
CONS(mark(X1), X2) → CONS(X1, X2)
FST(mark(X1), X2) → FST(X1, X2)
FST(X1, mark(X2)) → FST(X1, X2)
FROM(mark(X)) → FROM(X)
ADD(mark(X1), X2) → ADD(X1, X2)
ADD(X1, mark(X2)) → ADD(X1, X2)
LEN(mark(X)) → LEN(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(fst(X1, X2)) → FST(proper(X1), proper(X2))
PROPER(fst(X1, X2)) → PROPER(X1)
PROPER(fst(X1, X2)) → PROPER(X2)
PROPER(from(X)) → FROM(proper(X))
PROPER(from(X)) → PROPER(X)
PROPER(add(X1, X2)) → ADD(proper(X1), proper(X2))
PROPER(add(X1, X2)) → PROPER(X1)
PROPER(add(X1, X2)) → PROPER(X2)
PROPER(len(X)) → LEN(proper(X))
PROPER(len(X)) → PROPER(X)
S(ok(X)) → S(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
FST(ok(X1), ok(X2)) → FST(X1, X2)
FROM(ok(X)) → FROM(X)
ADD(ok(X1), ok(X2)) → ADD(X1, X2)
LEN(ok(X)) → LEN(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 24 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
S(x0, x1)  =  S(x1)

Tags:
S has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
S(x1)  =  S
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[S, ok1]

Status:
S: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEN(ok(X)) → LEN(X)
LEN(mark(X)) → LEN(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LEN(ok(X)) → LEN(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
LEN(x0, x1)  =  LEN(x1)

Tags:
LEN has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
LEN(x1)  =  LEN
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
LEN: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEN(mark(X)) → LEN(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LEN(mark(X)) → LEN(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
LEN(x0, x1)  =  LEN(x1)

Tags:
LEN has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
LEN(x1)  =  LEN
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[LEN, mark1]

Status:
LEN: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(X1, mark(X2)) → ADD(X1, X2)
ADD(mark(X1), X2) → ADD(X1, X2)
ADD(ok(X1), ok(X2)) → ADD(X1, X2)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADD(X1, mark(X2)) → ADD(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ADD(x0, x1, x2)  =  ADD(x2)

Tags:
ADD has argument tags [2,0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ADD(x1, x2)  =  ADD
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ADD: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(mark(X1), X2) → ADD(X1, X2)
ADD(ok(X1), ok(X2)) → ADD(X1, X2)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADD(mark(X1), X2) → ADD(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ADD(x0, x1, x2)  =  ADD(x1)

Tags:
ADD has argument tags [0,2,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ADD(x1, x2)  =  ADD
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ADD, mark1]

Status:
ADD: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(ok(X1), ok(X2)) → ADD(X1, X2)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADD(ok(X1), ok(X2)) → ADD(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ADD(x0, x1, x2)  =  ADD(x2)

Tags:
ADD has argument tags [1,0,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ADD2: multiset
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(ok(X)) → FROM(X)
FROM(mark(X)) → FROM(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FROM(ok(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
FROM(x0, x1)  =  FROM(x1)

Tags:
FROM has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
FROM(x1)  =  FROM
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
FROM: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FROM(mark(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
FROM(x0, x1)  =  FROM(x1)

Tags:
FROM has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
FROM(x1)  =  FROM
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[FROM, mark1]

Status:
FROM: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(X1, mark(X2)) → FST(X1, X2)
FST(mark(X1), X2) → FST(X1, X2)
FST(ok(X1), ok(X2)) → FST(X1, X2)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(X1, mark(X2)) → FST(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
FST(x0, x1, x2)  =  FST(x2)

Tags:
FST has argument tags [2,0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
FST(x1, x2)  =  FST
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
FST: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(mark(X1), X2) → FST(X1, X2)
FST(ok(X1), ok(X2)) → FST(X1, X2)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(mark(X1), X2) → FST(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
FST(x0, x1, x2)  =  FST(x1)

Tags:
FST has argument tags [0,2,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
FST(x1, x2)  =  FST
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[FST, mark1]

Status:
FST: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(ok(X1), ok(X2)) → FST(X1, X2)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(ok(X1), ok(X2)) → FST(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
FST(x0, x1, x2)  =  FST(x2)

Tags:
FST has argument tags [1,0,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
FST2: multiset
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(41) TRUE

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
CONS(x0, x1, x2)  =  CONS(x1, x2)

Tags:
CONS has argument tags [2,0,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
CONS: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
CONS(x0, x1, x2)  =  CONS(x0, x1)

Tags:
CONS has argument tags [0,0,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > CONS

Status:
CONS: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(48) TRUE

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(fst(X1, X2)) → PROPER(X1)
PROPER(fst(X1, X2)) → PROPER(X2)
PROPER(from(X)) → PROPER(X)
PROPER(add(X1, X2)) → PROPER(X1)
PROPER(add(X1, X2)) → PROPER(X2)
PROPER(len(X)) → PROPER(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(from(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PROPER(x0, x1)  =  PROPER(x0, x1)

Tags:
PROPER has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
PROPER(x1)  =  PROPER
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
fst(x1, x2)  =  fst(x1, x2)
from(x1)  =  from(x1)
add(x1, x2)  =  add(x1, x2)
len(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
from1 > PROPER

Status:
PROPER: multiset
cons2: multiset
s1: [1]
fst2: multiset
from1: multiset
add2: multiset


The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(fst(X1, X2)) → PROPER(X1)
PROPER(fst(X1, X2)) → PROPER(X2)
PROPER(add(X1, X2)) → PROPER(X1)
PROPER(add(X1, X2)) → PROPER(X2)
PROPER(len(X)) → PROPER(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(add(X1, X2)) → PROPER(X1)
PROPER(add(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PROPER(x0, x1)  =  PROPER(x0, x1)

Tags:
PROPER has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
PROPER(x1)  =  PROPER
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
fst(x1, x2)  =  fst(x1, x2)
add(x1, x2)  =  add(x1, x2)
len(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER, cons2, add2]

Status:
PROPER: multiset
cons2: [2,1]
fst2: [2,1]
add2: multiset


The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(fst(X1, X2)) → PROPER(X1)
PROPER(fst(X1, X2)) → PROPER(X2)
PROPER(len(X)) → PROPER(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
PROPER(fst(X1, X2)) → PROPER(X1)
PROPER(fst(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PROPER(x0, x1)  =  PROPER(x0, x1)

Tags:
PROPER has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
PROPER(x1)  =  PROPER
s(x1)  =  s(x1)
fst(x1, x2)  =  fst(x1, x2)
len(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
s1 > [PROPER, fst2]

Status:
PROPER: multiset
s1: multiset
fst2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(len(X)) → PROPER(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(len(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PROPER(x0, x1)  =  PROPER(x1)

Tags:
PROPER has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
PROPER(x1)  =  PROPER
len(x1)  =  len(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER, len1]

Status:
PROPER: multiset
len1: multiset


The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(59) TRUE

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(fst(X1, X2)) → ACTIVE(X2)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(add(X1, X2)) → ACTIVE(X1)
ACTIVE(add(X1, X2)) → ACTIVE(X2)
ACTIVE(len(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(add(X1, X2)) → ACTIVE(X1)
ACTIVE(add(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x0, x1)

Tags:
ACTIVE has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
fst(x1, x2)  =  fst(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
from(x1)  =  x1
add(x1, x2)  =  add(x1, x2)
len(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE, add2]

Status:
ACTIVE: multiset
fst2: multiset
cons2: multiset
add2: multiset


The following usable rules [FROCOS05] were oriented: none

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(fst(X1, X2)) → ACTIVE(X2)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(len(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x0, x1)

Tags:
ACTIVE has argument tags [1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
fst(x1, x2)  =  fst(x1, x2)
cons(x1, x2)  =  cons(x1)
from(x1)  =  from(x1)
len(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
cons1 > [ACTIVE, from1]

Status:
ACTIVE: []
fst2: multiset
cons1: multiset
from1: multiset


The following usable rules [FROCOS05] were oriented: none

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(X1, X2)) → ACTIVE(X1)
ACTIVE(fst(X1, X2)) → ACTIVE(X2)
ACTIVE(len(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(fst(X1, X2)) → ACTIVE(X1)
ACTIVE(fst(X1, X2)) → ACTIVE(X2)
ACTIVE(len(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x0, x1)

Tags:
ACTIVE has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
fst(x1, x2)  =  fst(x1, x2)
len(x1)  =  len(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE, fst2, len1]

Status:
ACTIVE: multiset
fst2: [1,2]
len1: multiset


The following usable rules [FROCOS05] were oriented: none

(66) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(68) TRUE

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
TOP(x0, x1)  =  TOP(x0, x1)

Tags:
TOP has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
fst(x1, x2)  =  fst(x1, x2)
0  =  0
nil  =  nil
s(x1)  =  s
cons(x1, x2)  =  cons(x1)
from(x1)  =  from(x1)
add(x1, x2)  =  add(x1, x2)
len(x1)  =  len(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
from1 > cons1 > [fst2, 0, nil, s, len1] > add2 > mark1

Status:
TOP1: multiset
mark1: multiset
fst2: multiset
0: multiset
nil: multiset
s: []
cons1: multiset
from1: [1]
add2: [1,2]
len1: [1]


The following usable rules [FROCOS05] were oriented:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(mark(X)) → mark(len(X))
len(ok(X)) → ok(len(X))
s(ok(X)) → ok(s(X))

(71) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
TOP(x0, x1)  =  TOP(x1)

Tags:
TOP has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
TOP(x1)  =  TOP
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
fst(x1, x2)  =  x2
0  =  0
mark(x1)  =  x1
nil  =  nil
s(x1)  =  x1
cons(x1, x2)  =  x2
from(x1)  =  x1
add(x1, x2)  =  x2
len(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[TOP, ok1] > active1 > [0, nil]

Status:
TOP: multiset
ok1: [1]
active1: multiset
0: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented: none

(73) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(75) TRUE