0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 QDPOrderProof (⇔)
↳8 QDP
↳9 DependencyGraphProof (⇔)
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 PisEmptyProof (⇔)
↳14 TRUE
terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
TERMS(N) → SQR(N)
TERMS(N) → S(N)
SQR(s(X)) → S(n__add(sqr(activate(X)), dbl(activate(X))))
SQR(s(X)) → SQR(activate(X))
SQR(s(X)) → ACTIVATE(X)
SQR(s(X)) → DBL(activate(X))
DBL(s(X)) → S(n__s(n__dbl(activate(X))))
DBL(s(X)) → ACTIVATE(X)
ADD(s(X), Y) → S(n__add(activate(X), Y))
ADD(s(X), Y) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__terms(X)) → TERMS(X)
ACTIVATE(n__add(X1, X2)) → ADD(X1, X2)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__dbl(X)) → DBL(X)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
SQR(s(X)) → SQR(activate(X))
SQR(s(X)) → ACTIVATE(X)
ACTIVATE(n__terms(X)) → TERMS(X)
TERMS(N) → SQR(N)
SQR(s(X)) → DBL(activate(X))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(X1, X2)
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → DBL(X)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__add(X1, X2)) → ADD(X1, X2)
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
[nfirst2, first2] > FIRST2 > [SQR1, ACTIVATE1, TERMS1, DBL1] > nil
recip > nil
sqr > [nadd2, ADD2, add2] > [SQR1, ACTIVATE1, TERMS1, DBL1] > nil
sqr > 0 > nil
SQR1: [1]
ACTIVATE1: [1]
TERMS1: [1]
DBL1: [1]
nadd2: [2,1]
ADD2: [2,1]
nfirst2: [2,1]
FIRST2: [2,1]
add2: [2,1]
first2: [2,1]
recip: []
sqr: []
0: []
nil: []
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
add(s(X), Y) → s(n__add(activate(X), Y))
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
dbl(0) → 0
dbl(X) → n__dbl(X)
s(X) → n__s(X)
terms(X) → n__terms(X)
add(0, X) → X
add(X1, X2) → n__add(X1, X2)
first(0, X) → nil
first(X1, X2) → n__first(X1, X2)
SQR(s(X)) → SQR(activate(X))
SQR(s(X)) → ACTIVATE(X)
ACTIVATE(n__terms(X)) → TERMS(X)
TERMS(N) → SQR(N)
SQR(s(X)) → DBL(activate(X))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → DBL(X)
terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SQR(s(X)) → ACTIVATE(X)
ACTIVATE(n__terms(X)) → TERMS(X)
SQR(s(X)) → DBL(activate(X))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → DBL(X)
SQR > [s1, activate1, add1, dbl1] > [terms1, recip] > DBL
SQR > [s1, activate1, add1, dbl1] > first2 > nfirst2 > DBL
SQR > [ACTIVATE1, TERMS1] > DBL
sqr > [s1, activate1, add1, dbl1] > [terms1, recip] > DBL
sqr > [s1, activate1, add1, dbl1] > first2 > nfirst2 > DBL
sqr > 0 > nil > DBL
SQR: []
s1: [1]
activate1: [1]
ACTIVATE1: [1]
TERMS1: [1]
DBL: []
terms1: [1]
add1: [1]
dbl1: [1]
nfirst2: [2,1]
first2: [2,1]
recip: []
sqr: []
0: []
nil: []
SQR(s(X)) → SQR(activate(X))
TERMS(N) → SQR(N)
terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
SQR(s(X)) → SQR(activate(X))
terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SQR(s(X)) → SQR(activate(X))
SQR > [activate1, terms1, cons1] > [recip, sqr1]
[nadd2, add2] > [s1, ns1] > [activate1, terms1, cons1] > [recip, sqr1]
[ndbl1, dbl1] > [s1, ns1] > [activate1, terms1, cons1] > [recip, sqr1]
[nfirst2, first2] > [activate1, terms1, cons1] > [recip, sqr1]
[nfirst2, first2] > nil > [recip, sqr1]
0 > nil > [recip, sqr1]
SQR: []
s1: [1]
activate1: [1]
terms1: [1]
nadd2: [2,1]
add2: [2,1]
ns1: [1]
ndbl1: [1]
dbl1: [1]
nfirst2: [2,1]
first2: [2,1]
cons1: [1]
recip: []
sqr1: [1]
0: []
nil: []
terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X