(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
ACTIVE(f(f(X))) → C(f(g(f(X))))
ACTIVE(f(f(X))) → F(g(f(X)))
ACTIVE(f(f(X))) → G(f(X))
ACTIVE(c(X)) → MARK(d(X))
ACTIVE(c(X)) → D(X)
ACTIVE(h(X)) → MARK(c(d(X)))
ACTIVE(h(X)) → C(d(X))
ACTIVE(h(X)) → D(X)
MARK(f(X)) → ACTIVE(f(mark(X)))
MARK(f(X)) → F(mark(X))
MARK(f(X)) → MARK(X)
MARK(c(X)) → ACTIVE(c(X))
MARK(g(X)) → ACTIVE(g(X))
MARK(d(X)) → ACTIVE(d(X))
MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(h(X)) → H(mark(X))
MARK(h(X)) → MARK(X)
F(mark(X)) → F(X)
F(active(X)) → F(X)
C(mark(X)) → C(X)
C(active(X)) → C(X)
G(mark(X)) → G(X)
G(active(X)) → G(X)
D(mark(X)) → D(X)
D(active(X)) → D(X)
H(mark(X)) → H(X)
H(active(X)) → H(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 8 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

H(active(X)) → H(X)
H(mark(X)) → H(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


H(active(X)) → H(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
H(x0, x1)  =  H(x1)

Tags:
H has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
H(x1)  =  H
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
H: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

H(mark(X)) → H(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


H(mark(X)) → H(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
H(x0, x1)  =  H(x1)

Tags:
H has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
H(x1)  =  H
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[H, mark1]

Status:
H: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D(active(X)) → D(X)
D(mark(X)) → D(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


D(active(X)) → D(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
D(x0, x1)  =  D(x1)

Tags:
D has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
D(x1)  =  D
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
D: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D(mark(X)) → D(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


D(mark(X)) → D(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
D(x0, x1)  =  D(x1)

Tags:
D has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
D(x1)  =  D
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[D, mark1]

Status:
D: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(active(X)) → G(X)
G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(active(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x0, x1)  =  G(x1)

Tags:
G has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
G(x1)  =  G
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
G: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(mark(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x0, x1)  =  G(x1)

Tags:
G has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
G(x1)  =  G
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[G, mark1]

Status:
G: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

C(active(X)) → C(X)
C(mark(X)) → C(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


C(active(X)) → C(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
C(x0, x1)  =  C(x1)

Tags:
C has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
C(x1)  =  C
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
C: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

C(mark(X)) → C(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


C(mark(X)) → C(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
C(x0, x1)  =  C(x1)

Tags:
C has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
C(x1)  =  C
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[C, mark1]

Status:
C: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X)) → F(X)
F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(active(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1)  =  F(x1)

Tags:
F has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(x1)  =  F
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
F: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(mark(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1)  =  F(x1)

Tags:
F has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(x1)  =  F
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[F, mark1]

Status:
F: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(39) TRUE

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
MARK(f(X)) → MARK(X)
MARK(c(X)) → ACTIVE(c(X))
ACTIVE(c(X)) → MARK(d(X))
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(h(X)) → MARK(c(d(X)))
MARK(d(X)) → ACTIVE(d(X))
MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(h(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(f(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
ACTIVE(x0, x1)  =  ACTIVE(x1)

Tags:
MARK has argument tags [1,3] and root tag 1
ACTIVE has argument tags [0,3] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
f(x1)  =  f(x1)
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  x1
c(x1)  =  x1
g(x1)  =  x1
d(x1)  =  x1
h(x1)  =  x1
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, f1, ACTIVE]

Status:
MARK: multiset
f1: [1]
ACTIVE: multiset


The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
MARK(c(X)) → ACTIVE(c(X))
ACTIVE(c(X)) → MARK(d(X))
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(h(X)) → MARK(c(d(X)))
MARK(d(X)) → ACTIVE(d(X))
MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(h(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(h(X)) → MARK(c(d(X)))
MARK(h(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
ACTIVE(x0, x1)  =  ACTIVE(x1)

Tags:
MARK has argument tags [2,2] and root tag 0
ACTIVE has argument tags [0,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  x1
f(x1)  =  f
ACTIVE(x1)  =  ACTIVE(x1)
mark(x1)  =  x1
c(x1)  =  x1
g(x1)  =  g(x1)
d(x1)  =  x1
h(x1)  =  h(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
ACTIVE1 > [f, g1] > h1

Status:
f: multiset
ACTIVE1: [1]
g1: multiset
h1: multiset


The following usable rules [FROCOS05] were oriented:

mark(f(X)) → active(f(mark(X)))
active(f(f(X))) → mark(c(f(g(f(X)))))
mark(c(X)) → active(c(X))
active(c(X)) → mark(d(X))
mark(g(X)) → active(g(X))
active(h(X)) → mark(c(d(X)))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(active(X)) → f(X)
f(mark(X)) → f(X)
g(active(X)) → g(X)
g(mark(X)) → g(X)
c(active(X)) → c(X)
c(mark(X)) → c(X)
d(active(X)) → d(X)
d(mark(X)) → d(X)
h(active(X)) → h(X)
h(mark(X)) → h(X)

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
MARK(c(X)) → ACTIVE(c(X))
ACTIVE(c(X)) → MARK(d(X))
MARK(g(X)) → ACTIVE(g(X))
MARK(d(X)) → ACTIVE(d(X))
MARK(h(X)) → ACTIVE(h(mark(X)))

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(g(X)) → ACTIVE(g(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
ACTIVE(x0, x1)  =  ACTIVE(x0)

Tags:
MARK has argument tags [0,1] and root tag 0
ACTIVE has argument tags [1,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
f(x1)  =  f
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  mark
c(x1)  =  c
g(x1)  =  g
d(x1)  =  d
h(x1)  =  x1
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
mark > g > [MARK, f, ACTIVE, c, d, active]

Status:
MARK: multiset
f: []
ACTIVE: []
mark: multiset
c: []
g: multiset
d: []
active: multiset


The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
MARK(c(X)) → ACTIVE(c(X))
ACTIVE(c(X)) → MARK(d(X))
MARK(d(X)) → ACTIVE(d(X))
MARK(h(X)) → ACTIVE(h(mark(X)))

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(h(X)) → ACTIVE(h(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
ACTIVE(x0, x1)  =  ACTIVE(x0)

Tags:
MARK has argument tags [1,2] and root tag 0
ACTIVE has argument tags [2,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
f(x1)  =  x1
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  mark
c(x1)  =  c
g(x1)  =  g(x1)
d(x1)  =  d
h(x1)  =  h(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
g1 > [MARK, ACTIVE, mark, c, d]
h1 > [MARK, ACTIVE, mark, c, d]

Status:
MARK: multiset
ACTIVE: []
mark: multiset
c: []
g1: multiset
d: []
h1: multiset


The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
MARK(c(X)) → ACTIVE(c(X))
ACTIVE(c(X)) → MARK(d(X))
MARK(d(X)) → ACTIVE(d(X))

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(c(X)) → MARK(d(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
ACTIVE(x0, x1)  =  ACTIVE(x1)

Tags:
MARK has argument tags [2,1] and root tag 0
ACTIVE has argument tags [1,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  x1
f(x1)  =  f
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  mark
c(x1)  =  c
g(x1)  =  g
d(x1)  =  d
active(x1)  =  active
h(x1)  =  h(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE, g, active] > [mark, h1] > [f, c] > d

Status:
f: []
ACTIVE: multiset
mark: []
c: []
g: multiset
d: multiset
active: []
h1: [1]


The following usable rules [FROCOS05] were oriented:

c(active(X)) → c(X)
c(mark(X)) → c(X)
d(active(X)) → d(X)
d(mark(X)) → d(X)

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
MARK(c(X)) → ACTIVE(c(X))
MARK(d(X)) → ACTIVE(d(X))

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(d(X)) → ACTIVE(d(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0)
ACTIVE(x0, x1)  =  ACTIVE(x0)

Tags:
MARK has argument tags [1,0] and root tag 0
ACTIVE has argument tags [1,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  x1
f(x1)  =  f
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  mark
c(x1)  =  c
g(x1)  =  g(x1)
d(x1)  =  d(x1)
active(x1)  =  active
h(x1)  =  h(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[g1, d1, active, h1] > [f, ACTIVE, c] > mark

Status:
f: []
ACTIVE: []
mark: multiset
c: []
g1: multiset
d1: multiset
active: multiset
h1: multiset


The following usable rules [FROCOS05] were oriented:

c(active(X)) → c(X)
c(mark(X)) → c(X)

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
MARK(c(X)) → ACTIVE(c(X))

The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(f(X))) → MARK(c(f(g(f(X)))))
MARK(c(X)) → ACTIVE(c(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
ACTIVE(x0, x1)  =  ACTIVE(x1)

Tags:
MARK has argument tags [3,0] and root tag 0
ACTIVE has argument tags [2,3] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
f(x1)  =  f(x1)
ACTIVE(x1)  =  x1
mark(x1)  =  x1
c(x1)  =  x1
g(x1)  =  g
active(x1)  =  x1
d(x1)  =  d
h(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK1, f1] > [g, d]

Status:
MARK1: multiset
f1: multiset
g: []
d: []


The following usable rules [FROCOS05] were oriented:

mark(f(X)) → active(f(mark(X)))
active(f(f(X))) → mark(c(f(g(f(X)))))
mark(c(X)) → active(c(X))
active(c(X)) → mark(d(X))
mark(g(X)) → active(g(X))
active(h(X)) → mark(c(d(X)))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(active(X)) → f(X)
f(mark(X)) → f(X)
g(active(X)) → g(X)
g(mark(X)) → g(X)
c(active(X)) → c(X)
c(mark(X)) → c(X)
d(active(X)) → d(X)
d(mark(X)) → d(X)
h(active(X)) → h(X)
h(mark(X)) → h(X)

(54) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(56) TRUE