(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(f(X)) → c(n__f(g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
d(X) → n__d(X)
activate(n__f(X)) → f(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(X)) → C(n__f(g(n__f(X))))
C(X) → D(activate(X))
C(X) → ACTIVATE(X)
H(X) → C(n__d(X))
ACTIVATE(n__f(X)) → F(X)
ACTIVATE(n__d(X)) → D(X)

The TRS R consists of the following rules:

f(f(X)) → c(n__f(g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
d(X) → n__d(X)
activate(n__f(X)) → f(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

C(X) → ACTIVATE(X)
ACTIVATE(n__f(X)) → F(X)
F(f(X)) → C(n__f(g(n__f(X))))

The TRS R consists of the following rules:

f(f(X)) → c(n__f(g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
d(X) → n__d(X)
activate(n__f(X)) → f(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


C(X) → ACTIVATE(X)
ACTIVATE(n__f(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
C(x1)  =  C(x1)
ACTIVATE(x1)  =  ACTIVATE(x1)
F(x1)  =  F(x1)

Tags:
C has tags [3]
ACTIVATE has tags [0]
F has tags [3]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
n__f(x1)  =  n__f(x1)
f(x1)  =  f(x1)
g(x1)  =  g

Lexicographic path order with status [LPO].
Quasi-Precedence:
[nf1, f1, g]

Status:
nf1: [1]
f1: [1]
g: []


The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(X)) → C(n__f(g(n__f(X))))

The TRS R consists of the following rules:

f(f(X)) → c(n__f(g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
d(X) → n__d(X)
activate(n__f(X)) → f(X)
activate(n__d(X)) → d(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(8) TRUE