(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__first(x1, x2)  =  n__first(x2)
FIRST(x1, x2)  =  FIRST(x2)
s(x1)  =  s
cons(x1, x2)  =  x2

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVATE1, nfirst1, FIRST1, s]

Status:
ACTIVATE1: multiset
nfirst1: multiset
FIRST1: multiset
s: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1)
s(x1)  =  s(x1)
cons(x1, x2)  =  cons
activate(x1)  =  activate
n__from(x1)  =  n__from(x1)
from(x1)  =  from
n__first(x1, x2)  =  n__first(x1, x2)
first(x1, x2)  =  first
0  =  0
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
activate > [s1, cons, nfirst2, first] > SEL1
activate > from > SEL1
nfrom1 > from > SEL1
0 > SEL1
nil > SEL1

Status:
SEL1: multiset
s1: [1]
cons: multiset
activate: []
nfrom1: multiset
from: multiset
nfirst2: multiset
first: multiset
0: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE