(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__from(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x1)
FIRST(x0, x1, x2)  =  FIRST(x0)

Tags:
ACTIVATE has argument tags [7,5] and root tag 0
FIRST has argument tags [5,7,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 1   
POL(ACTIVATE(x1)) = 0   
POL(FIRST(x1, x2)) = x1 + x2   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x2   
POL(first(x1, x2)) = x1 + x2   
POL(from(x1)) = 1 + x1   
POL(n__first(x1, x2)) = x1 + x2   
POL(n__from(x1)) = 1 + x1   
POL(n__s(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   

The following usable rules [FROCOS05] were oriented:

activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
s(X) → n__s(X)
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
first(0, Z) → nil
first(X1, X2) → n__first(X1, X2)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__s(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x1)
FIRST(x0, x1, x2)  =  FIRST(x0)

Tags:
ACTIVATE has argument tags [5,3] and root tag 0
FIRST has argument tags [3,4,4] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 1   
POL(ACTIVATE(x1)) = 0   
POL(FIRST(x1, x2)) = x2   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x2   
POL(first(x1, x2)) = x1 + x2   
POL(from(x1)) = 0   
POL(n__first(x1, x2)) = x1 + x2   
POL(n__from(x1)) = 0   
POL(n__s(x1)) = 1 + x1   
POL(nil) = 0   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
s(X) → n__s(X)
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
first(0, Z) → nil
first(X1, X2) → n__first(X1, X2)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x0, x1)
FIRST(x0, x1, x2)  =  FIRST(x1, x2)

Tags:
ACTIVATE has argument tags [5,0] and root tag 0
FIRST has argument tags [2,5,0] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 1   
POL(ACTIVATE(x1)) = 1   
POL(FIRST(x1, x2)) = 1 + x1   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x2   
POL(first(x1, x2)) = 1 + x1 + x2   
POL(from(x1)) = 0   
POL(n__first(x1, x2)) = 1 + x1 + x2   
POL(n__from(x1)) = 0   
POL(n__s(x1)) = 1 + x1   
POL(nil) = 1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
s(X) → n__s(X)
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
first(0, Z) → nil
first(X1, X2) → n__first(X1, X2)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x1)

Tags:
ACTIVATE has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(ACTIVATE(x1)) = 0   
POL(n__first(x1, x2)) = 1 + x1 + x2   

The following usable rules [FROCOS05] were oriented: none

(13) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(15) TRUE

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
SEL(x0, x1, x2)  =  SEL(x1)

Tags:
SEL has argument tags [1,2,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(SEL(x1, x2)) = 1 + x1 + x2   
POL(activate(x1)) = 1 + x1   
POL(cons(x1, x2)) = 0   
POL(first(x1, x2)) = 1 + x2   
POL(from(x1)) = 1   
POL(n__first(x1, x2)) = 1 + x2   
POL(n__from(x1)) = 1   
POL(n__s(x1)) = 1 + x1   
POL(nil) = 1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
s(X) → n__s(X)
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
first(0, Z) → nil
first(X1, X2) → n__first(X1, X2)

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) TRUE