(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(0, 0)) → MARK(true)
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
ACTIVE(eq(s(X), s(Y))) → EQ(X, Y)
ACTIVE(eq(X, Y)) → MARK(false)
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
ACTIVE(inf(X)) → CONS(X, inf(s(X)))
ACTIVE(inf(X)) → INF(s(X))
ACTIVE(inf(X)) → S(X)
ACTIVE(take(0, X)) → MARK(nil)
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
ACTIVE(take(s(X), cons(Y, L))) → CONS(Y, take(X, L))
ACTIVE(take(s(X), cons(Y, L))) → TAKE(X, L)
ACTIVE(length(nil)) → MARK(0)
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
ACTIVE(length(cons(X, L))) → S(length(L))
ACTIVE(length(cons(X, L))) → LENGTH(L)
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
MARK(0) → ACTIVE(0)
MARK(true) → ACTIVE(true)
MARK(s(X)) → ACTIVE(s(X))
MARK(false) → ACTIVE(false)
MARK(inf(X)) → ACTIVE(inf(mark(X)))
MARK(inf(X)) → INF(mark(X))
MARK(inf(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(nil) → ACTIVE(nil)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → LENGTH(mark(X))
MARK(length(X)) → MARK(X)
EQ(mark(X1), X2) → EQ(X1, X2)
EQ(X1, mark(X2)) → EQ(X1, X2)
EQ(active(X1), X2) → EQ(X1, X2)
EQ(X1, active(X2)) → EQ(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
INF(mark(X)) → INF(X)
INF(active(X)) → INF(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 19 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(active(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
LENGTH(x0, x1)  =  LENGTH(x0, x1)

Tags:
LENGTH has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > LENGTH

Status:
LENGTH: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
LENGTH(x0, x1)  =  LENGTH(x0, x1)

Tags:
LENGTH has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[LENGTH, mark1]

Status:
LENGTH: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
TAKE(x0, x1, x2)  =  TAKE(x0, x1)

Tags:
TAKE has argument tags [2,2,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
TAKE(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
TAKE(x0, x1, x2)  =  TAKE(x1, x2)

Tags:
TAKE has argument tags [3,0,3] and root tag 0

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
TAKE(x1, x2)  =  x2
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
CONS(x0, x1, x2)  =  CONS(x0, x1)

Tags:
CONS has argument tags [2,2,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
CONS(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
CONS(x0, x1, x2)  =  CONS(x1, x2)

Tags:
CONS has argument tags [3,0,3] and root tag 0

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
CONS(x1, x2)  =  x2
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INF(active(X)) → INF(X)
INF(mark(X)) → INF(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INF(active(X)) → INF(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
INF(x0, x1)  =  INF(x0, x1)

Tags:
INF has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
INF(x1)  =  INF
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > INF

Status:
INF: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INF(mark(X)) → INF(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INF(mark(X)) → INF(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
INF(x0, x1)  =  INF(x0, x1)

Tags:
INF has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
INF(x1)  =  INF
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[INF, mark1]

Status:
INF: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
S(x0, x1)  =  S(x0, x1)

Tags:
S has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
S(x1)  =  S
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > S

Status:
S: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
S(x0, x1)  =  S(x0, x1)

Tags:
S has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
S(x1)  =  S
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[S, mark1]

Status:
S: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(39) TRUE

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(X1, mark(X2)) → EQ(X1, X2)
EQ(mark(X1), X2) → EQ(X1, X2)
EQ(active(X1), X2) → EQ(X1, X2)
EQ(X1, active(X2)) → EQ(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(X1, mark(X2)) → EQ(X1, X2)
EQ(mark(X1), X2) → EQ(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
EQ(x0, x1, x2)  =  EQ(x0, x1)

Tags:
EQ has argument tags [2,2,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
EQ(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(active(X1), X2) → EQ(X1, X2)
EQ(X1, active(X2)) → EQ(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(active(X1), X2) → EQ(X1, X2)
EQ(X1, active(X2)) → EQ(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
EQ(x0, x1, x2)  =  EQ(x1, x2)

Tags:
EQ has argument tags [3,0,3] and root tag 0

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
EQ(x1, x2)  =  x2
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(44) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(46) TRUE

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(inf(X)) → ACTIVE(inf(mark(X)))
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
MARK(inf(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → MARK(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(length(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x1)
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
ACTIVE has argument tags [0,2] and root tag 1
MARK has argument tags [1,2] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
eq(x1, x2)  =  eq(x2)
s(x1)  =  x1
MARK(x1)  =  MARK
inf(x1)  =  x1
cons(x1, x2)  =  x2
take(x1, x2)  =  take(x1, x2)
mark(x1)  =  x1
length(x1)  =  length(x1)
active(x1)  =  x1
0  =  0
true  =  true
false  =  false
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
[eq1, false] > MARK
take2 > MARK
length1 > [0, true] > nil > MARK

Status:
eq1: [1]
MARK: []
take2: multiset
length1: [1]
0: multiset
true: multiset
false: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

eq(X1, mark(X2)) → eq(X1, X2)
eq(mark(X1), X2) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
inf(active(X)) → inf(X)
inf(mark(X)) → inf(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
mark(eq(X1, X2)) → active(eq(X1, X2))
active(inf(X)) → mark(cons(X, inf(s(X))))
mark(s(X)) → active(s(X))
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
mark(inf(X)) → active(inf(mark(X)))
active(length(cons(X, L))) → mark(s(length(L)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(length(X)) → active(length(mark(X)))
mark(0) → active(0)
mark(true) → active(true)
mark(false) → active(false)
mark(nil) → active(nil)
length(active(X)) → length(X)
length(mark(X)) → length(X)
active(eq(0, 0)) → mark(true)
active(eq(X, Y)) → mark(false)
active(take(0, X)) → mark(nil)
active(length(nil)) → mark(0)

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(inf(X)) → ACTIVE(inf(mark(X)))
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
MARK(inf(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(length(X)) → ACTIVE(length(mark(X)))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(inf(X)) → ACTIVE(inf(mark(X)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x0, x1)
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
ACTIVE has argument tags [0,2] and root tag 1
MARK has argument tags [2,0] and root tag 1

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
eq(x1, x2)  =  eq
s(x1)  =  x1
MARK(x1)  =  MARK
inf(x1)  =  inf
cons(x1, x2)  =  cons
take(x1, x2)  =  take
mark(x1)  =  x1
length(x1)  =  length
active(x1)  =  x1
0  =  0
true  =  true
false  =  false
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
inf > [ACTIVE, eq, MARK, cons, length]
take > [ACTIVE, eq, MARK, cons, length]
false > [ACTIVE, eq, MARK, cons, length]
nil > 0 > true > [ACTIVE, eq, MARK, cons, length]

Status:
ACTIVE: multiset
eq: multiset
MARK: multiset
inf: []
cons: multiset
take: []
length: multiset
0: multiset
true: multiset
false: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
MARK(inf(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(length(X)) → ACTIVE(length(mark(X)))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(inf(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x0, x1)
MARK(x0, x1)  =  MARK(x1)

Tags:
ACTIVE has argument tags [0,1] and root tag 0
MARK has argument tags [2,0] and root tag 0

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
eq(x1, x2)  =  eq
s(x1)  =  s
MARK(x1)  =  MARK
inf(x1)  =  inf(x1)
cons(x1, x2)  =  cons
take(x1, x2)  =  take
length(x1)  =  length(x1)
mark(x1)  =  x1
active(x1)  =  x1
0  =  0
true  =  true
false  =  false
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
length1 > 0 > [take, nil] > [ACTIVE, eq, s, MARK, inf1, cons, true] > false

Status:
ACTIVE: []
eq: []
s: []
MARK: multiset
inf1: [1]
cons: []
take: multiset
length1: [1]
0: multiset
true: multiset
false: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x0)
MARK(x0, x1)  =  MARK(x0)

Tags:
ACTIVE has argument tags [0,3] and root tag 0
MARK has argument tags [0,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
eq(x1, x2)  =  eq
s(x1)  =  s
MARK(x1)  =  MARK
inf(x1)  =  x1
cons(x1, x2)  =  cons
take(x1, x2)  =  take
length(x1)  =  length(x1)
mark(x1)  =  mark
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
mark > [eq, s, MARK, cons, take, length1, active]

Status:
eq: multiset
s: multiset
MARK: multiset
cons: multiset
take: multiset
length1: [1]
mark: multiset
active: multiset


The following usable rules [FROCOS05] were oriented:

eq(X1, mark(X2)) → eq(X1, X2)
eq(mark(X1), X2) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x0)
MARK(x0, x1)  =  MARK(x1)

Tags:
ACTIVE has argument tags [0,3] and root tag 1
MARK has argument tags [2,0] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
eq(x1, x2)  =  eq
s(x1)  =  s(x1)
MARK(x1)  =  MARK
inf(x1)  =  inf
cons(x1, x2)  =  cons
take(x1, x2)  =  x2
mark(x1)  =  mark
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
[inf, active] > [ACTIVE, eq, s1, MARK, cons]

Status:
ACTIVE: []
eq: []
s1: [1]
MARK: multiset
inf: multiset
cons: []
mark: multiset
active: multiset


The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x0)
MARK(x0, x1)  =  MARK(x0)

Tags:
ACTIVE has argument tags [0,3] and root tag 0
MARK has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
eq(x1, x2)  =  x1
s(x1)  =  x1
MARK(x1)  =  x1
inf(x1)  =  x1
cons(x1, x2)  =  x1
take(x1, x2)  =  take(x1, x2)
mark(x1)  =  x1
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
take2: multiset


The following usable rules [FROCOS05] were oriented:

eq(X1, mark(X2)) → eq(X1, X2)
eq(mark(X1), X2) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x0)
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
ACTIVE has argument tags [2,3] and root tag 0
MARK has argument tags [0,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
eq(x1, x2)  =  x1
s(x1)  =  x1
MARK(x1)  =  MARK
inf(x1)  =  inf
cons(x1, x2)  =  cons
mark(x1)  =  x1
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
inf > cons > MARK

Status:
MARK: multiset
inf: multiset
cons: []


The following usable rules [FROCOS05] were oriented:

eq(X1, mark(X2)) → eq(X1, X2)
eq(mark(X1), X2) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x0)
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
ACTIVE has argument tags [0,3] and root tag 0
MARK has argument tags [0,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
eq(x1, x2)  =  eq
s(x1)  =  s
MARK(x1)  =  MARK
cons(x1, x2)  =  cons
mark(x1)  =  mark
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
s > [ACTIVE, MARK, cons] > [eq, mark]
active > [ACTIVE, MARK, cons] > [eq, mark]

Status:
ACTIVE: multiset
eq: multiset
s: multiset
MARK: multiset
cons: multiset
mark: []
active: []


The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x0, x1)
MARK(x0, x1)  =  MARK(x0)

Tags:
ACTIVE has argument tags [0,0] and root tag 0
MARK has argument tags [0,0] and root tag 1

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
eq(x1, x2)  =  eq(x1)
s(x1)  =  s(x1)
MARK(x1)  =  MARK(x1)
mark(x1)  =  x1
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE, eq1, s1, MARK1]

Status:
ACTIVE: multiset
eq1: multiset
s1: multiset
MARK1: multiset


The following usable rules [FROCOS05] were oriented:

eq(X1, mark(X2)) → eq(X1, X2)
eq(mark(X1), X2) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)

(65) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(67) TRUE