(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(from(X)) → S(X)
ACTIVE(2nd(X)) → 2ND(active(X))
ACTIVE(2nd(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → FROM(active(X))
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
2ND(mark(X)) → 2ND(X)
CONS(mark(X1), X2) → CONS(X1, X2)
FROM(mark(X)) → FROM(X)
S(mark(X)) → S(X)
PROPER(2nd(X)) → 2ND(proper(X))
PROPER(2nd(X)) → PROPER(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(from(X)) → FROM(proper(X))
PROPER(from(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
2ND(ok(X)) → 2ND(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
FROM(ok(X)) → FROM(X)
S(ok(X)) → S(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 13 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
S(x0, x1)  =  S(x1)

Tags:
S has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
S(x1)  =  S
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
S: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
S(x0, x1)  =  S(x1)

Tags:
S has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
S(x1)  =  S
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[S, mark1]

Status:
S: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(ok(X)) → FROM(X)
FROM(mark(X)) → FROM(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FROM(ok(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
FROM(x0, x1)  =  FROM(x1)

Tags:
FROM has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
FROM(x1)  =  FROM
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
FROM: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FROM(mark(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
FROM(x0, x1)  =  FROM(x1)

Tags:
FROM has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
FROM(x1)  =  FROM
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[FROM, mark1]

Status:
FROM: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
CONS(x0, x1, x2)  =  CONS(x1, x2)

Tags:
CONS has argument tags [2,0,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
CONS: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
CONS(x0, x1, x2)  =  CONS(x0, x1)

Tags:
CONS has argument tags [0,0,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > CONS

Status:
CONS: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2ND(ok(X)) → 2ND(X)
2ND(mark(X)) → 2ND(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2ND(ok(X)) → 2ND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
2ND(x0, x1)  =  2ND(x1)

Tags:
2ND has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
2ND(x1)  =  2ND
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
2ND: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2ND(mark(X)) → 2ND(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2ND(mark(X)) → 2ND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
2ND(x0, x1)  =  2ND(x1)

Tags:
2ND has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
2ND(x1)  =  2ND
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[2ND, mark1]

Status:
2ND: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(2nd(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(from(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(2nd(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PROPER(x0, x1)  =  PROPER(x0, x1)

Tags:
PROPER has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
PROPER(x1)  =  PROPER
cons(x1, x2)  =  cons(x1, x2)
2nd(x1)  =  2nd(x1)
from(x1)  =  from(x1)
s(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
2nd1 > [PROPER, from1]

Status:
PROPER: multiset
cons2: [2,1]
2nd1: [1]
from1: multiset


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PROPER(x0, x1)  =  PROPER(x0, x1)

Tags:
PROPER has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
PROPER(x1)  =  PROPER
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER, cons2, s1]

Status:
PROPER: multiset
cons2: [1,2]
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(39) TRUE

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(2nd(X)) → ACTIVE(X)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x1)

Tags:
ACTIVE has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
cons(x1, x2)  =  cons(x1, x2)
2nd(x1)  =  x1
from(x1)  =  x1
s(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ACTIVE: multiset
cons2: multiset


The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(2nd(X)) → ACTIVE(X)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(2nd(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x1)

Tags:
ACTIVE has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
2nd(x1)  =  2nd(x1)
from(x1)  =  x1
s(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE, 2nd1]

Status:
ACTIVE: multiset
2nd1: [1]


The following usable rules [FROCOS05] were oriented: none

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(from(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x1)

Tags:
ACTIVE has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
from(x1)  =  from(x1)
s(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ACTIVE: multiset
from1: multiset


The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVE(x0, x1)  =  ACTIVE(x1)

Tags:
ACTIVE has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE, s1]

Status:
ACTIVE: multiset
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(50) TRUE

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
TOP(x0, x1)  =  TOP(x0, x1)

Tags:
TOP has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
TOP(x1)  =  x1
ok(x1)  =  ok
active(x1)  =  active
mark(x1)  =  mark
proper(x1)  =  proper
2nd(x1)  =  x1
cons(x1, x2)  =  x1
from(x1)  =  x1
s(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ok, active, mark] > proper

Status:
ok: []
active: []
mark: []
proper: multiset


The following usable rules [FROCOS05] were oriented:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
2nd(mark(X)) → mark(2nd(X))
2nd(ok(X)) → ok(2nd(X))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
TOP(x0, x1)  =  TOP(x1)

Tags:
TOP has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
TOP(x1)  =  TOP
ok(x1)  =  ok(x1)
active(x1)  =  x1
2nd(x1)  =  2nd(x1)
cons(x1, x2)  =  x2
mark(x1)  =  mark
from(x1)  =  x1
s(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
2nd1 > [TOP, ok1] > mark

Status:
TOP: multiset
ok1: [1]
2nd1: [1]
mark: []


The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(57) TRUE