(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(f(a)) → F(g(n__f(n__a)))
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__a) → A
The TRS R consists of the following rules:
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__f(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPSizeChangeProof (EQUIVALENT transformation)
We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.
Order:Homeomorphic Embedding Order
AFS:
n__f(x1) = n__f(x1)
From the DPs we obtained the following set of size-change graphs:
- ACTIVATE(n__f(X)) → ACTIVATE(X) (allowed arguments on rhs = {1})
The graph contains the following edges 1 > 1
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
(6) TRUE