(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(n__f(n__a)) → F(n__g(n__f(n__a)))
ACTIVATE(n__f(X)) → F(X)
ACTIVATE(n__a) → A
ACTIVATE(n__g(X)) → G(activate(X))
ACTIVATE(n__g(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__g(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__g(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(
x0,
x1) =
ACTIVATE(
x0)
Tags:
ACTIVATE has argument tags [0,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVATE(
x1) =
x1
n__g(
x1) =
n__g(
x1)
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial
Status:
ng1: [1]
The following usable rules [FROCOS05] were oriented:
none
(6) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(8) TRUE