(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(s(X)) → f(X)
g(cons(0, Y)) → g(Y)
g(cons(s(X), Y)) → s(X)
h(cons(X, Y)) → h(g(cons(X, Y)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(X)) → F(X)
G(cons(0, Y)) → G(Y)
H(cons(X, Y)) → H(g(cons(X, Y)))
H(cons(X, Y)) → G(cons(X, Y))

The TRS R consists of the following rules:

f(s(X)) → f(X)
g(cons(0, Y)) → g(Y)
g(cons(s(X), Y)) → s(X)
h(cons(X, Y)) → h(g(cons(X, Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(cons(0, Y)) → G(Y)

The TRS R consists of the following rules:

f(s(X)) → f(X)
g(cons(0, Y)) → g(Y)
g(cons(s(X), Y)) → s(X)
h(cons(X, Y)) → h(g(cons(X, Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(cons(0, Y)) → G(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x0, x1)  =  G(x1)

Tags:
G has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(G(x1)) = 0   
POL(cons(x1, x2)) = 1 + x2   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(s(X)) → f(X)
g(cons(0, Y)) → g(Y)
g(cons(s(X), Y)) → s(X)
h(cons(X, Y)) → h(g(cons(X, Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(X)) → F(X)

The TRS R consists of the following rules:

f(s(X)) → f(X)
g(cons(0, Y)) → g(Y)
g(cons(s(X), Y)) → s(X)
h(cons(X, Y)) → h(g(cons(X, Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(s(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1)  =  F(x1)

Tags:
F has argument tags [1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(F(x1)) = 0   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(s(X)) → f(X)
g(cons(0, Y)) → g(Y)
g(cons(s(X), Y)) → s(X)
h(cons(X, Y)) → h(g(cons(X, Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE