0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 PisEmptyProof (⇔)
↳9 TRUE
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 PisEmptyProof (⇔)
↳14 TRUE
↳15 QDP
↳16 QDPOrderProof (⇔)
↳17 QDP
↳18 PisEmptyProof (⇔)
↳19 TRUE
↳20 QDP
↳21 QDPOrderProof (⇔)
↳22 QDP
↳23 PisEmptyProof (⇔)
↳24 TRUE
↳25 QDP
↳26 QDPOrderProof (⇔)
↳27 QDP
↳28 PisEmptyProof (⇔)
↳29 TRUE
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
EQ(s(n), s(m)) → EQ(n, m)
LE(s(n), s(m)) → LE(n, m)
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
MIN(cons(n, cons(m, x))) → LE(n, m)
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
REPLACE(n, m, cons(k, x)) → EQ(n, k)
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
SORT(cons(n, x)) → MIN(cons(n, x))
SORT(cons(n, x)) → SORT(replace(min(cons(n, x)), n, x))
SORT(cons(n, x)) → REPLACE(min(cons(n, x)), n, x)
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
LE(s(n), s(m)) → LE(n, m)
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s(n), s(m)) → LE(n, m)
trivial
LE2: multiset
s1: [1]
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
s1 > false > [cons2, le2] > true
cons2: multiset
le2: multiset
true: multiset
false: multiset
0: multiset
s1: multiset
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
EQ(s(n), s(m)) → EQ(n, m)
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQ(s(n), s(m)) → EQ(n, m)
trivial
EQ2: multiset
s1: [1]
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
0 > [REPLACE3, cons1, eq2]
true > [REPLACE3, cons1, eq2]
s > false > [REPLACE3, cons1, eq2]
REPLACE3: multiset
cons1: multiset
eq2: [2,1]
false: multiset
0: multiset
true: multiset
s: []
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
SORT(cons(n, x)) → SORT(replace(min(cons(n, x)), n, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SORT(cons(n, x)) → SORT(replace(min(cons(n, x)), n, x))
[s, false] > [cons1, 0, true] > eq2 > [nil, le2]
cons1: [1]
0: multiset
nil: multiset
s: []
le2: multiset
true: multiset
false: multiset
eq2: [1,2]
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(0, nil)) → 0
min(cons(s(n), nil)) → s(n)
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
sort(nil) → nil
sort(cons(n, x)) → cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x)))