0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
and(true, y) → y
and(false, y) → false
eq(nil, nil) → true
eq(cons(t, l), nil) → false
eq(nil, cons(t, l)) → false
eq(cons(t, l), cons(t', l')) → and(eq(t, t'), eq(l, l'))
eq(var(l), var(l')) → eq(l, l')
eq(var(l), apply(t, s)) → false
eq(var(l), lambda(x, t)) → false
eq(apply(t, s), var(l)) → false
eq(apply(t, s), apply(t', s')) → and(eq(t, t'), eq(s, s'))
eq(apply(t, s), lambda(x, t)) → false
eq(lambda(x, t), var(l)) → false
eq(lambda(x, t), apply(t, s)) → false
eq(lambda(x, t), lambda(x', t')) → and(eq(x, x'), eq(t, t'))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))
EQ(cons(t, l), cons(t', l')) → AND(eq(t, t'), eq(l, l'))
EQ(cons(t, l), cons(t', l')) → EQ(t, t')
EQ(cons(t, l), cons(t', l')) → EQ(l, l')
EQ(var(l), var(l')) → EQ(l, l')
EQ(apply(t, s), apply(t', s')) → AND(eq(t, t'), eq(s, s'))
EQ(apply(t, s), apply(t', s')) → EQ(t, t')
EQ(apply(t, s), apply(t', s')) → EQ(s, s')
EQ(lambda(x, t), lambda(x', t')) → AND(eq(x, x'), eq(t, t'))
EQ(lambda(x, t), lambda(x', t')) → EQ(x, x')
EQ(lambda(x, t), lambda(x', t')) → EQ(t, t')
REN(var(l), var(k), var(l')) → IF(eq(l, l'), var(k), var(l'))
REN(var(l), var(k), var(l')) → EQ(l, l')
REN(x, y, apply(t, s)) → REN(x, y, t)
REN(x, y, apply(t, s)) → REN(x, y, s)
REN(x, y, lambda(z, t)) → REN(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))
REN(x, y, lambda(z, t)) → REN(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)
and(true, y) → y
and(false, y) → false
eq(nil, nil) → true
eq(cons(t, l), nil) → false
eq(nil, cons(t, l)) → false
eq(cons(t, l), cons(t', l')) → and(eq(t, t'), eq(l, l'))
eq(var(l), var(l')) → eq(l, l')
eq(var(l), apply(t, s)) → false
eq(var(l), lambda(x, t)) → false
eq(apply(t, s), var(l)) → false
eq(apply(t, s), apply(t', s')) → and(eq(t, t'), eq(s, s'))
eq(apply(t, s), lambda(x, t)) → false
eq(lambda(x, t), var(l)) → false
eq(lambda(x, t), apply(t, s)) → false
eq(lambda(x, t), lambda(x', t')) → and(eq(x, x'), eq(t, t'))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))
EQ(cons(t, l), cons(t', l')) → EQ(l, l')
EQ(cons(t, l), cons(t', l')) → EQ(t, t')
EQ(var(l), var(l')) → EQ(l, l')
EQ(apply(t, s), apply(t', s')) → EQ(t, t')
EQ(apply(t, s), apply(t', s')) → EQ(s, s')
EQ(lambda(x, t), lambda(x', t')) → EQ(x, x')
EQ(lambda(x, t), lambda(x', t')) → EQ(t, t')
and(true, y) → y
and(false, y) → false
eq(nil, nil) → true
eq(cons(t, l), nil) → false
eq(nil, cons(t, l)) → false
eq(cons(t, l), cons(t', l')) → and(eq(t, t'), eq(l, l'))
eq(var(l), var(l')) → eq(l, l')
eq(var(l), apply(t, s)) → false
eq(var(l), lambda(x, t)) → false
eq(apply(t, s), var(l)) → false
eq(apply(t, s), apply(t', s')) → and(eq(t, t'), eq(s, s'))
eq(apply(t, s), lambda(x, t)) → false
eq(lambda(x, t), var(l)) → false
eq(lambda(x, t), apply(t, s)) → false
eq(lambda(x, t), lambda(x', t')) → and(eq(x, x'), eq(t, t'))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))
Order:Homeomorphic Embedding Order
AFS:
var(x1) = var(x1)
apply(x1, x2) = apply(x1, x2)
cons(x1, x2) = cons(x1, x2)
lambda(x1, x2) = lambda(x1, x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
REN(x, y, apply(t, s)) → REN(x, y, s)
REN(x, y, apply(t, s)) → REN(x, y, t)
REN(x, y, lambda(z, t)) → REN(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))
REN(x, y, lambda(z, t)) → REN(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)
and(true, y) → y
and(false, y) → false
eq(nil, nil) → true
eq(cons(t, l), nil) → false
eq(nil, cons(t, l)) → false
eq(cons(t, l), cons(t', l')) → and(eq(t, t'), eq(l, l'))
eq(var(l), var(l')) → eq(l, l')
eq(var(l), apply(t, s)) → false
eq(var(l), lambda(x, t)) → false
eq(apply(t, s), var(l)) → false
eq(apply(t, s), apply(t', s')) → and(eq(t, t'), eq(s, s'))
eq(apply(t, s), lambda(x, t)) → false
eq(lambda(x, t), var(l)) → false
eq(lambda(x, t), apply(t, s)) → false
eq(lambda(x, t), lambda(x', t')) → and(eq(x, x'), eq(t, t'))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))
Order:Combined order from the following AFS and order.
ren(x1, x2, x3) = x3
var(x1) = var
if(x1, x2, x3) = x3
eq(x1, x2) = eq(x2)
apply(x1, x2) = apply(x1, x2)
lambda(x1, x2) = lambda(x2)
cons(x1, x2) = cons
nil = nil
true = true
false = false
and(x1, x2) = x1
Homeomorphic Embedding Order
AFS:
ren(x1, x2, x3) = x3
var(x1) = var
if(x1, x2, x3) = x3
eq(x1, x2) = eq(x2)
apply(x1, x2) = apply(x1, x2)
lambda(x1, x2) = lambda(x2)
cons(x1, x2) = cons
nil = nil
true = true
false = false
and(x1, x2) = x1
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
ren(var(l), var(k), var(l')) → if(eq(l, l'), var(k), var(l'))
ren(x, y, apply(t, s)) → apply(ren(x, y, t), ren(x, y, s))
ren(x, y, lambda(z, t)) → lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)))
if(true, var(k), var(l')) → var(k)
if(false, var(k), var(l')) → var(l')