(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x)) → F(x)
G(s(x), s(y)) → IF(f(x), s(x), s(y))
G(s(x), s(y)) → F(x)
G(x, c(y)) → G(x, g(s(c(y)), y))
G(x, c(y)) → G(s(c(y)), y)

The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x)) → F(x)

The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(s(x)) → F(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1)  =  F(x1)

Tags:
F has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(x1)  =  F
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[F, s1]

Status:
F: multiset
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(x, c(y)) → G(s(c(y)), y)
G(x, c(y)) → G(x, g(s(c(y)), y))

The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(x, c(y)) → G(s(c(y)), y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x0, x1, x2)  =  G(x1, x2)

Tags:
G has argument tags [0,2,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
G(x1, x2)  =  G
c(x1)  =  c(x1)
s(x1)  =  s
g(x1, x2)  =  g(x1)
if(x1, x2, x3)  =  if(x2, x3)
f(x1)  =  f
0  =  0
true  =  true
1  =  1
false  =  false

Recursive path order with status [RPO].
Quasi-Precedence:
c1 > [G, s] > g1 > if2
f > true

Status:
G: []
c1: multiset
s: []
g1: [1]
if2: multiset
f: multiset
0: multiset
true: multiset
1: multiset
false: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(x, c(y)) → G(x, g(s(c(y)), y))

The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(x, c(y)) → G(x, g(s(c(y)), y))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x0, x1, x2)  =  G(x2)

Tags:
G has argument tags [0,3,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
G(x1, x2)  =  G
c(x1)  =  c(x1)
g(x1, x2)  =  g(x1)
s(x1)  =  s
if(x1, x2, x3)  =  if(x1, x2, x3)
f(x1)  =  f
0  =  0
true  =  true
1  =  1
false  =  false

Recursive path order with status [RPO].
Quasi-Precedence:
[G, c1] > g1 > if3
[G, c1] > s > [f, 0, true] > false > if3
1 > false > if3

Status:
G: multiset
c1: multiset
g1: [1]
s: multiset
if3: [3,2,1]
f: []
0: multiset
true: multiset
1: multiset
false: multiset


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE