(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))
SUM(cons(0, x), y) → SUM(x, y)
WEIGHT(cons(n, cons(m, x))) → WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))
WEIGHT(cons(n, cons(m, x))) → SUM(cons(n, cons(m, x)), cons(0, x))

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(0, x), y) → SUM(x, y)
SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
0  =  0
s(x1)  =  s(x1)
cons(x1, x2)  =  cons(x1, x2)

From the DPs we obtained the following set of size-change graphs:

  • SUM(cons(0, x), y) → SUM(x, y) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 >= 2

  • SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y)) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

WEIGHT(cons(n, cons(m, x))) → WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Combined order from the following AFS and order.
sum(x1, x2)  =  x2
cons(x1, x2)  =  cons(x2)
0  =  0
s(x1)  =  x1
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:

trivial

Status:
cons1: [1]
0: []
nil: []

AFS:
sum(x1, x2)  =  x2
cons(x1, x2)  =  cons(x2)
0  =  0
s(x1)  =  x1
nil  =  nil

From the DPs we obtained the following set of size-change graphs:

  • WEIGHT(cons(n, cons(m, x))) → WEIGHT(sum(cons(n, cons(m, x)), cons(0, x))) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05].


sum(cons(0, x), y) → sum(x, y)
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(nil, y) → y

(10) TRUE