(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))
SUM(cons(0, x), y) → SUM(x, y)
WEIGHT(cons(n, cons(m, x))) → WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))
WEIGHT(cons(n, cons(m, x))) → SUM(cons(n, cons(m, x)), cons(0, x))

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(0, x), y) → SUM(x, y)
SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(cons(0, x), y) → SUM(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
SUM(x0, x1, x2)  =  SUM(x1)

Tags:
SUM has argument tags [2,3,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
SUM(x1, x2)  =  x1
cons(x1, x2)  =  cons(x1, x2)
0  =  0
s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
cons2: [1,2]
0: []


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
SUM(x0, x1, x2)  =  SUM(x0, x2)

Tags:
SUM has argument tags [0,3,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
SUM(x1, x2)  =  SUM(x1, x2)
cons(x1, x2)  =  x1
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
SUM2 > s1

Status:
SUM2: [1,2]
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

WEIGHT(cons(n, cons(m, x))) → WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


WEIGHT(cons(n, cons(m, x))) → WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
WEIGHT(x0, x1)  =  WEIGHT(x0)

Tags:
WEIGHT has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
WEIGHT(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
sum(x1, x2)  =  sum(x2)
0  =  0
s(x1)  =  s
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
cons2 > sum1 > [0, s]
nil > [0, s]

Status:
cons2: [1,2]
sum1: [1]
0: []
s: []
nil: []


The following usable rules [FROCOS05] were oriented:

sum(cons(0, x), y) → sum(x, y)
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(nil, y) → y

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE