(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(quot(x, s(z), s(z)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(x), s(y), z) → QUOT(x, y, z)
QUOT(x, 0, s(z)) → QUOT(x, s(z), s(z))

The TRS R consists of the following rules:

quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(quot(x, s(z), s(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


QUOT(s(x), s(y), z) → QUOT(x, y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
QUOT(x1, x2, x3)  =  QUOT(x1)

Tags:
QUOT has tags [0,2,3]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(x, 0, s(z)) → QUOT(x, s(z), s(z))

The TRS R consists of the following rules:

quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(quot(x, s(z), s(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(6) TRUE