(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h), l))
a(h, h, x) → s(x)
a(x, s(y), h) → a(x, y, s(h))
a(x, s(y), s(z)) → a(x, y, a(x, s(y), z))
a(s(x), h, z) → a(x, z, z)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l), k) → APP(l, k)
SUM(cons(x, cons(y, l))) → SUM(cons(a(x, y, h), l))
SUM(cons(x, cons(y, l))) → A(x, y, h)
A(x, s(y), h) → A(x, y, s(h))
A(x, s(y), s(z)) → A(x, y, a(x, s(y), z))
A(x, s(y), s(z)) → A(x, s(y), z)
A(s(x), h, z) → A(x, z, z)

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h), l))
a(h, h, x) → s(x)
a(x, s(y), h) → a(x, y, s(h))
a(x, s(y), s(z)) → a(x, y, a(x, s(y), z))
a(s(x), h, z) → a(x, z, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(x, s(y), s(z)) → A(x, y, a(x, s(y), z))
A(x, s(y), h) → A(x, y, s(h))
A(x, s(y), s(z)) → A(x, s(y), z)
A(s(x), h, z) → A(x, z, z)

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h), l))
a(h, h, x) → s(x)
a(x, s(y), h) → a(x, y, s(h))
a(x, s(y), s(z)) → a(x, y, a(x, s(y), z))
a(s(x), h, z) → a(x, z, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A(s(x), h, z) → A(x, z, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A(x1, x2, x3)  =  A(x1)

Tags:
A has tags [3,1,3]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Lexicographic path order with status [LPO].
Quasi-Precedence:
h > [s1, a3]

Status:
s1: [1]
a3: [2,1,3]
h: []


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(x, s(y), s(z)) → A(x, y, a(x, s(y), z))
A(x, s(y), h) → A(x, y, s(h))
A(x, s(y), s(z)) → A(x, s(y), z)

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h), l))
a(h, h, x) → s(x)
a(x, s(y), h) → a(x, y, s(h))
a(x, s(y), s(z)) → a(x, y, a(x, s(y), z))
a(s(x), h, z) → a(x, z, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A(x, s(y), s(z)) → A(x, y, a(x, s(y), z))
A(x, s(y), h) → A(x, y, s(h))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A(x1, x2, x3)  =  A(x2)

Tags:
A has tags [2,0,2]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
s(x1)  =  s(x1)
a(x1, x2, x3)  =  a(x1, x3)
h  =  h

Lexicographic path order with status [LPO].
Quasi-Precedence:
[s1, a2] > h

Status:
s1: [1]
a2: [1,2]
h: []


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(x, s(y), s(z)) → A(x, s(y), z)

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h), l))
a(h, h, x) → s(x)
a(x, s(y), h) → a(x, y, s(h))
a(x, s(y), s(z)) → a(x, y, a(x, s(y), z))
a(s(x), h, z) → a(x, z, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A(x, s(y), s(z)) → A(x, s(y), z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A(x1, x2, x3)  =  A(x3)

Tags:
A has tags [3,0,2]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h), l))
a(h, h, x) → s(x)
a(x, s(y), h) → a(x, y, s(h))
a(x, s(y), s(z)) → a(x, y, a(x, s(y), z))
a(s(x), h, z) → a(x, z, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(x, cons(y, l))) → SUM(cons(a(x, y, h), l))

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h), l))
a(h, h, x) → s(x)
a(x, s(y), h) → a(x, y, s(h))
a(x, s(y), s(z)) → a(x, y, a(x, s(y), z))
a(s(x), h, z) → a(x, z, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(cons(x, cons(y, l))) → SUM(cons(a(x, y, h), l))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
SUM(x1)  =  SUM(x1)

Tags:
SUM has tags [0]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
cons(x1, x2)  =  cons(x1, x2)
a(x1, x2, x3)  =  a
h  =  h
s(x1)  =  s

Lexicographic path order with status [LPO].
Quasi-Precedence:
[cons2, a] > [h, s]

Status:
cons2: [2,1]
a: []
h: []
s: []


The following usable rules [FROCOS05] were oriented:

a(h, h, x) → s(x)
a(x, s(y), s(z)) → a(x, y, a(x, s(y), z))
a(x, s(y), h) → a(x, y, s(h))
a(s(x), h, z) → a(x, z, z)

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h), l))
a(h, h, x) → s(x)
a(x, s(y), h) → a(x, y, s(h))
a(x, s(y), s(z)) → a(x, y, a(x, s(y), z))
a(s(x), h, z) → a(x, z, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l), k) → APP(l, k)

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h), l))
a(h, h, x) → s(x)
a(x, s(y), h) → a(x, y, s(h))
a(x, s(y), s(z)) → a(x, y, a(x, s(y), z))
a(s(x), h, z) → a(x, z, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(cons(x, l), k) → APP(l, k)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x1, x2)  =  APP(x1)

Tags:
APP has tags [1,0]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
cons2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h), l))
a(h, h, x) → s(x)
a(x, s(y), h) → a(x, y, s(h))
a(x, s(y), s(z)) → a(x, y, a(x, s(y), z))
a(s(x), h, z) → a(x, z, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE