(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MSORT(.(x, y)) → MIN(x, y)
MSORT(.(x, y)) → MSORT(del(min(x, y), .(x, y)))
MSORT(.(x, y)) → DEL(min(x, y), .(x, y))
MIN(x, .(y, z)) → MIN(x, z)
MIN(x, .(y, z)) → MIN(y, z)
DEL(x, .(y, z)) → DEL(x, z)
The TRS R consists of the following rules:
msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DEL(x, .(y, z)) → DEL(x, z)
The TRS R consists of the following rules:
msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
DEL(x, .(y, z)) → DEL(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
DEL(
x0,
x1,
x2) =
DEL(
x0,
x1)
Tags:
DEL has argument tags [1,0,2] and root tag 0
Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
DEL(
x1,
x2) =
x2
.(
x1,
x2) =
.(
x2)
Recursive path order with status [RPO].
Quasi-Precedence:
trivial
Status:
.1: multiset
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MIN(x, .(y, z)) → MIN(y, z)
MIN(x, .(y, z)) → MIN(x, z)
The TRS R consists of the following rules:
msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MIN(x, .(y, z)) → MIN(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MIN(
x0,
x1,
x2) =
MIN(
x0,
x2)
Tags:
MIN has argument tags [2,0,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MIN(
x1,
x2) =
MIN(
x1)
.(
x1,
x2) =
.(
x1,
x2)
Recursive path order with status [RPO].
Quasi-Precedence:
.2 > MIN1
Status:
MIN1: [1]
.2: multiset
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MIN(x, .(y, z)) → MIN(x, z)
The TRS R consists of the following rules:
msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MIN(x, .(y, z)) → MIN(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MIN(
x0,
x1,
x2) =
MIN(
x0,
x1)
Tags:
MIN has argument tags [1,0,2] and root tag 0
Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MIN(
x1,
x2) =
x2
.(
x1,
x2) =
.(
x2)
Recursive path order with status [RPO].
Quasi-Precedence:
trivial
Status:
.1: multiset
The following usable rules [FROCOS05] were oriented:
none
(14) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(16) TRUE
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MSORT(.(x, y)) → MSORT(del(min(x, y), .(x, y)))
The TRS R consists of the following rules:
msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MSORT(.(x, y)) → MSORT(del(min(x, y), .(x, y)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MSORT(
x0,
x1) =
MSORT(
x0,
x1)
Tags:
MSORT has argument tags [1,1] and root tag 0
Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MSORT(
x1) =
MSORT
.(
x1,
x2) =
.(
x1)
del(
x1,
x2) =
del
min(
x1,
x2) =
min(
x2)
nil =
nil
if(
x1,
x2,
x3) =
if(
x1)
<=(
x1,
x2) =
<=(
x1,
x2)
=(
x1,
x2) =
=
Recursive path order with status [RPO].
Quasi-Precedence:
min1 > [MSORT, .1, del, <=2] > = > if1
nil > if1
Status:
MSORT: multiset
.1: multiset
del: multiset
min1: multiset
nil: multiset
if1: multiset
<=2: multiset
=: multiset
The following usable rules [FROCOS05] were oriented:
none
(19) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(21) TRUE