(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MSORT(.(x, y)) → MIN(x, y)
MSORT(.(x, y)) → MSORT(del(min(x, y), .(x, y)))
MSORT(.(x, y)) → DEL(min(x, y), .(x, y))
MIN(x, .(y, z)) → MIN(x, z)
MIN(x, .(y, z)) → MIN(y, z)
DEL(x, .(y, z)) → DEL(x, z)

The TRS R consists of the following rules:

msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DEL(x, .(y, z)) → DEL(x, z)

The TRS R consists of the following rules:

msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DEL(x, .(y, z)) → DEL(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DEL(x1, x2)  =  DEL(x2)
.(x1, x2)  =  .(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
.2 > DEL1

Status:
DEL1: multiset
.2: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MIN(x, .(y, z)) → MIN(y, z)
MIN(x, .(y, z)) → MIN(x, z)

The TRS R consists of the following rules:

msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MIN(x, .(y, z)) → MIN(y, z)
MIN(x, .(y, z)) → MIN(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[MIN2, .2]

Status:
MIN2: [2,1]
.2: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MSORT(.(x, y)) → MSORT(del(min(x, y), .(x, y)))

The TRS R consists of the following rules:

msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MSORT(.(x, y)) → MSORT(del(min(x, y), .(x, y)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MSORT(x1)  =  MSORT(x1)
.(x1, x2)  =  .
del(x1, x2)  =  del
min(x1, x2)  =  min(x1, x2)
nil  =  nil
if(x1, x2, x3)  =  if
<=(x1, x2)  =  <=(x1, x2)
=(x1, x2)  =  =(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
MSORT1 > [., <=2] > min2 > [del, nil, if, =2]

Status:
MSORT1: [1]
.: multiset
del: multiset
min2: multiset
nil: multiset
if: multiset
<=2: multiset
=2: multiset


The following usable rules [FROCOS05] were oriented:

del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

msort(nil) → nil
msort(.(x, y)) → .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) → x
min(x, .(y, z)) → if(<=(x, y), min(x, z), min(y, z))
del(x, nil) → nil
del(x, .(y, z)) → if(=(x, y), z, .(y, del(x, z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE