(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
s(a) → a
s(s(x)) → x
s(f(x, y)) → f(s(y), s(x))
s(g(x, y)) → g(s(x), s(y))
f(x, a) → x
f(a, y) → y
f(g(x, y), g(u, v)) → g(f(x, u), f(y, v))
g(a, a) → a
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(f(x, y)) → F(s(y), s(x))
S(f(x, y)) → S(y)
S(f(x, y)) → S(x)
S(g(x, y)) → G(s(x), s(y))
S(g(x, y)) → S(x)
S(g(x, y)) → S(y)
F(g(x, y), g(u, v)) → G(f(x, u), f(y, v))
F(g(x, y), g(u, v)) → F(x, u)
F(g(x, y), g(u, v)) → F(y, v)
The TRS R consists of the following rules:
s(a) → a
s(s(x)) → x
s(f(x, y)) → f(s(y), s(x))
s(g(x, y)) → g(s(x), s(y))
f(x, a) → x
f(a, y) → y
f(g(x, y), g(u, v)) → g(f(x, u), f(y, v))
g(a, a) → a
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(x, y), g(u, v)) → F(y, v)
F(g(x, y), g(u, v)) → F(x, u)
The TRS R consists of the following rules:
s(a) → a
s(s(x)) → x
s(f(x, y)) → f(s(y), s(x))
s(g(x, y)) → g(s(x), s(y))
f(x, a) → x
f(a, y) → y
f(g(x, y), g(u, v)) → g(f(x, u), f(y, v))
g(a, a) → a
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(g(x, y), g(u, v)) → F(y, v)
F(g(x, y), g(u, v)) → F(x, u)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x1,
x2) =
F(
x1)
Tags:
F has tags [1,1]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial
Status:
g2: [1,2]
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
s(a) → a
s(s(x)) → x
s(f(x, y)) → f(s(y), s(x))
s(g(x, y)) → g(s(x), s(y))
f(x, a) → x
f(a, y) → y
f(g(x, y), g(u, v)) → g(f(x, u), f(y, v))
g(a, a) → a
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(f(x, y)) → S(x)
S(f(x, y)) → S(y)
S(g(x, y)) → S(x)
S(g(x, y)) → S(y)
The TRS R consists of the following rules:
s(a) → a
s(s(x)) → x
s(f(x, y)) → f(s(y), s(x))
s(g(x, y)) → g(s(x), s(y))
f(x, a) → x
f(a, y) → y
f(g(x, y), g(u, v)) → g(f(x, u), f(y, v))
g(a, a) → a
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
S(f(x, y)) → S(x)
S(f(x, y)) → S(y)
S(g(x, y)) → S(x)
S(g(x, y)) → S(y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
S(
x1) =
S(
x1)
Tags:
S has tags [0]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial
Status:
f2: [1,2]
g2: [1,2]
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
s(a) → a
s(s(x)) → x
s(f(x, y)) → f(s(y), s(x))
s(g(x, y)) → g(s(x), s(y))
f(x, a) → x
f(a, y) → y
f(g(x, y), g(u, v)) → g(f(x, u), f(y, v))
g(a, a) → a
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(14) TRUE