(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(a) → g(h(a))
h(g(x)) → g(h(f(x)))
k(x, h(x), a) → h(x)
k(f(x), y, x) → f(x)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(a) → H(a)
H(g(x)) → H(f(x))
H(g(x)) → F(x)

The TRS R consists of the following rules:

f(a) → g(h(a))
h(g(x)) → g(h(f(x)))
k(x, h(x), a) → h(x)
k(f(x), y, x) → f(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

H(g(x)) → H(f(x))

The TRS R consists of the following rules:

f(a) → g(h(a))
h(g(x)) → g(h(f(x)))
k(x, h(x), a) → h(x)
k(f(x), y, x) → f(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Combined order from the following AFS and order.
f(x1)  =  x1
a  =  a
g(x1)  =  g(x1)
h(x1)  =  h

Lexicographic path order with status [LPO].
Quasi-Precedence:

a > g1
a > h

Status:
a: []
g1: [1]
h: []

AFS:
f(x1)  =  x1
a  =  a
g(x1)  =  g(x1)
h(x1)  =  h

From the DPs we obtained the following set of size-change graphs:

  • H(g(x)) → H(f(x)) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05].


f(a) → g(h(a))

(6) TRUE