0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(x, +(y, z)) → +(+(x, y), z)
f(g(f(x))) → f(h(s(0), x))
f(g(h(x, y))) → f(h(s(x), y))
f(h(x, h(y, z))) → f(h(+(x, y), z))
+1(x, s(y)) → +1(x, y)
+1(s(x), y) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
F(g(f(x))) → F(h(s(0), x))
F(g(h(x, y))) → F(h(s(x), y))
F(h(x, h(y, z))) → F(h(+(x, y), z))
F(h(x, h(y, z))) → +1(x, y)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(x, +(y, z)) → +(+(x, y), z)
f(g(f(x))) → f(h(s(0), x))
f(g(h(x, y))) → f(h(s(x), y))
f(h(x, h(y, z))) → f(h(+(x, y), z))
+1(s(x), y) → +1(x, y)
+1(x, s(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(x, +(y, z)) → +(+(x, y), z)
f(g(f(x))) → f(h(s(0), x))
f(g(h(x, y))) → f(h(s(x), y))
f(h(x, h(y, z))) → f(h(+(x, y), z))
Order:Homeomorphic Embedding Order
AFS:
s(x1) = s(x1)
+(x1, x2) = +(x1, x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
F(h(x, h(y, z))) → F(h(+(x, y), z))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(x, +(y, z)) → +(+(x, y), z)
f(g(f(x))) → f(h(s(0), x))
f(g(h(x, y))) → f(h(s(x), y))
f(h(x, h(y, z))) → f(h(+(x, y), z))
Order:Combined order from the following AFS and order.
+(x1, x2) = +
s(x1) = x1
h(x1, x2) = h(x2)
Homeomorphic Embedding Order
AFS:
+(x1, x2) = +
s(x1) = x1
h(x1, x2) = h(x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none