0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 QDP
↳7 QDPOrderProof (⇔)
↳8 QDP
↳9 PisEmptyProof (⇔)
↳10 TRUE
f(a, g(y)) → g(g(y))
f(g(x), a) → f(x, g(a))
f(g(x), g(y)) → h(g(y), x, g(y))
h(g(x), y, z) → f(y, h(x, y, z))
h(a, y, z) → z
F(g(x), a) → F(x, g(a))
F(g(x), g(y)) → H(g(y), x, g(y))
H(g(x), y, z) → F(y, h(x, y, z))
H(g(x), y, z) → H(x, y, z)
f(a, g(y)) → g(g(y))
f(g(x), a) → f(x, g(a))
f(g(x), g(y)) → h(g(y), x, g(y))
h(g(x), y, z) → f(y, h(x, y, z))
h(a, y, z) → z
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F(g(x), a) → F(x, g(a))
F(g(x), g(y)) → H(g(y), x, g(y))
POL(F(x1, x2)) = 1 + x1
POL(H(x1, x2, x3)) = 1 + x2
POL(a) = 0
POL(f(x1, x2)) = 0
POL(g(x1)) = 1 + x1
POL(h(x1, x2, x3)) = 0
H(g(x), y, z) → F(y, h(x, y, z))
H(g(x), y, z) → H(x, y, z)
f(a, g(y)) → g(g(y))
f(g(x), a) → f(x, g(a))
f(g(x), g(y)) → h(g(y), x, g(y))
h(g(x), y, z) → f(y, h(x, y, z))
h(a, y, z) → z
H(g(x), y, z) → H(x, y, z)
f(a, g(y)) → g(g(y))
f(g(x), a) → f(x, g(a))
f(g(x), g(y)) → h(g(y), x, g(y))
h(g(x), y, z) → f(y, h(x, y, z))
h(a, y, z) → z
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
H(g(x), y, z) → H(x, y, z)
POL(H(x1, x2, x3)) = x1
POL(g(x1)) = 1 + x1
f(a, g(y)) → g(g(y))
f(g(x), a) → f(x, g(a))
f(g(x), g(y)) → h(g(y), x, g(y))
h(g(x), y, z) → f(y, h(x, y, z))
h(a, y, z) → z