(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

g(f(x, y), z) → f(x, g(y, z))
g(h(x, y), z) → g(x, f(y, z))
g(x, h(y, z)) → h(g(x, y), z)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(f(x, y), z) → G(y, z)
G(h(x, y), z) → G(x, f(y, z))
G(x, h(y, z)) → G(x, y)

The TRS R consists of the following rules:

g(f(x, y), z) → f(x, g(y, z))
g(h(x, y), z) → g(x, f(y, z))
g(x, h(y, z)) → h(g(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(x, h(y, z)) → G(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x1, x2)  =  G(x2)

Tags:
G has tags [0,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
f(x1, x2)  =  f
h(x1, x2)  =  h(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[f, h1]

Status:
f: multiset
h1: [1]


The following usable rules [FROCOS05] were oriented: none

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(f(x, y), z) → G(y, z)
G(h(x, y), z) → G(x, f(y, z))

The TRS R consists of the following rules:

g(f(x, y), z) → f(x, g(y, z))
g(h(x, y), z) → g(x, f(y, z))
g(x, h(y, z)) → h(g(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(f(x, y), z) → G(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x1, x2)  =  G(x1)

Tags:
G has tags [0,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
f(x1, x2)  =  f(x1, x2)
h(x1, x2)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
f2: multiset


The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(h(x, y), z) → G(x, f(y, z))

The TRS R consists of the following rules:

g(f(x, y), z) → f(x, g(y, z))
g(h(x, y), z) → g(x, f(y, z))
g(x, h(y, z)) → h(g(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(h(x, y), z) → G(x, f(y, z))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x1, x2)  =  G(x1)

Tags:
G has tags [1,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Recursive path order with status [RPO].
Quasi-Precedence:
[h2, f2]

Status:
h2: multiset
f2: multiset


The following usable rules [FROCOS05] were oriented: none

(8) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

g(f(x, y), z) → f(x, g(y, z))
g(h(x, y), z) → g(x, f(y, z))
g(x, h(y, z)) → h(g(x, y), z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(10) TRUE