(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(.(nil, y)) → F(y)
F(.(.(x, y), z)) → F(.(x, .(y, z)))
G(.(x, nil)) → G(x)
G(.(x, .(y, z))) → G(.(.(x, y), z))

The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(.(x, .(y, z))) → G(.(.(x, y), z))
G(.(x, nil)) → G(x)

The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(.(x, .(y, z))) → G(.(.(x, y), z))
G(.(x, nil)) → G(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x0, x1)  =  G(x0)

Tags:
G has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
G(x1)  =  x1
.(x1, x2)  =  .(x1, x2)
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
.2: [2,1]
nil: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(.(.(x, y), z)) → F(.(x, .(y, z)))
F(.(nil, y)) → F(y)

The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(.(nil, y)) → F(y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1)  =  F(x0, x1)

Tags:
F has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(x1)  =  F
.(x1, x2)  =  .(x1, x2)
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
nil > F > .2

Status:
F: multiset
.2: [1,2]
nil: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(.(.(x, y), z)) → F(.(x, .(y, z)))

The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(.(.(x, y), z)) → F(.(x, .(y, z)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1)  =  F(x1)

Tags:
F has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Recursive path order with status [RPO].
Quasi-Precedence:
[F1, .2]

Status:
F1: multiset
.2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE