(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(.(nil, y)) → F(y)
F(.(.(x, y), z)) → F(.(x, .(y, z)))
G(.(x, nil)) → G(x)
G(.(x, .(y, z))) → G(.(.(x, y), z))
The TRS R consists of the following rules:
f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(.(x, .(y, z))) → G(.(.(x, y), z))
G(.(x, nil)) → G(x)
The TRS R consists of the following rules:
f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
G(.(x, nil)) → G(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(
x0,
x1) =
G(
x0,
x1)
Tags:
G has argument tags [1,1] and root tag 0
Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(.(x1, x2)) = x1 + x2
POL(G(x1)) = 1
POL(nil) = 1
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(.(x, .(y, z))) → G(.(.(x, y), z))
The TRS R consists of the following rules:
f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
G(.(x, .(y, z))) → G(.(.(x, y), z))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(
x0,
x1) =
G(
x1)
Tags:
G has argument tags [1,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(.(x1, x2)) = 1 + x2
POL(G(x1)) = 0
The following usable rules [FROCOS05] were oriented:
none
(9) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(11) TRUE
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(.(.(x, y), z)) → F(.(x, .(y, z)))
F(.(nil, y)) → F(y)
The TRS R consists of the following rules:
f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(.(nil, y)) → F(y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x0,
x1) =
F(
x0,
x1)
Tags:
F has argument tags [0,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(.(x1, x2)) = x1 + x2
POL(F(x1)) = 0
POL(nil) = 1
The following usable rules [FROCOS05] were oriented:
none
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(.(.(x, y), z)) → F(.(x, .(y, z)))
The TRS R consists of the following rules:
f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(.(.(x, y), z)) → F(.(x, .(y, z)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x0,
x1) =
F(
x1)
Tags:
F has argument tags [1,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(.(x1, x2)) = 1 + x1
POL(F(x1)) = 0
The following usable rules [FROCOS05] were oriented:
none
(16) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(18) TRUE