0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(x, and(y, y)) → and(x, y)
or(or(x, y), and(y, z)) → or(x, y)
or(x, and(x, y)) → x
or(true, y) → true
or(x, false) → x
or(x, x) → x
or(x, or(y, y)) → or(x, y)
and(x, true) → x
and(false, y) → false
and(x, x) → x
AND(x, or(y, z)) → OR(and(x, y), and(x, z))
AND(x, or(y, z)) → AND(x, y)
AND(x, or(y, z)) → AND(x, z)
AND(x, and(y, y)) → AND(x, y)
OR(x, or(y, y)) → OR(x, y)
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(x, and(y, y)) → and(x, y)
or(or(x, y), and(y, z)) → or(x, y)
or(x, and(x, y)) → x
or(true, y) → true
or(x, false) → x
or(x, x) → x
or(x, or(y, y)) → or(x, y)
and(x, true) → x
and(false, y) → false
and(x, x) → x
OR(x, or(y, y)) → OR(x, y)
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(x, and(y, y)) → and(x, y)
or(or(x, y), and(y, z)) → or(x, y)
or(x, and(x, y)) → x
or(true, y) → true
or(x, false) → x
or(x, x) → x
or(x, or(y, y)) → or(x, y)
and(x, true) → x
and(false, y) → false
and(x, x) → x
Order:Homeomorphic Embedding Order
AFS:
or(x1, x2) = or(x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
AND(x, or(y, z)) → AND(x, z)
AND(x, or(y, z)) → AND(x, y)
AND(x, and(y, y)) → AND(x, y)
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(x, and(y, y)) → and(x, y)
or(or(x, y), and(y, z)) → or(x, y)
or(x, and(x, y)) → x
or(true, y) → true
or(x, false) → x
or(x, x) → x
or(x, or(y, y)) → or(x, y)
and(x, true) → x
and(false, y) → false
and(x, x) → x
Order:Homeomorphic Embedding Order
AFS:
and(x1, x2) = and(x2)
or(x1, x2) = or(x1, x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none