(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(-(x, y), z) → -(+(x, z), y)
-(+(x, y), y) → x
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(-(x, y), z) → -1(+(x, z), y)
+1(-(x, y), z) → +1(x, z)
The TRS R consists of the following rules:
+(-(x, y), z) → -(+(x, z), y)
-(+(x, y), y) → x
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(-(x, y), z) → +1(x, z)
The TRS R consists of the following rules:
+(-(x, y), z) → -(+(x, z), y)
-(+(x, y), y) → x
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPSizeChangeProof (EQUIVALENT transformation)
We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.
Order:Homeomorphic Embedding Order
AFS:
-(x1, x2) = -(x1)
From the DPs we obtained the following set of size-change graphs:
- +1(-(x, y), z) → +1(x, z) (allowed arguments on rhs = {1, 2})
The graph contains the following edges 1 > 1, 2 >= 2
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
(6) TRUE