(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(+(x, y)) → +1(minus(y), minus(x))
MINUS(+(x, y)) → MINUS(y)
MINUS(+(x, y)) → MINUS(x)
*1(x, +(y, z)) → +1(*(x, y), *(x, z))
*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
*1(x, minus(y)) → MINUS(*(x, y))
*1(x, minus(y)) → *1(x, y)
The TRS R consists of the following rules:
+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(+(x, y)) → MINUS(x)
MINUS(+(x, y)) → MINUS(y)
The TRS R consists of the following rules:
+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MINUS(+(x, y)) → MINUS(x)
MINUS(+(x, y)) → MINUS(y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MINUS(
x0,
x1) =
MINUS(
x1)
Tags:
MINUS has argument tags [1,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MINUS(
x1) =
MINUS
+(
x1,
x2) =
+(
x1,
x2)
Lexicographic path order with status [LPO].
Quasi-Precedence:
+2 > MINUS
Status:
MINUS: []
+2: [1,2]
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
*1(x, +(y, z)) → *1(x, z)
*1(x, +(y, z)) → *1(x, y)
*1(x, minus(y)) → *1(x, y)
The TRS R consists of the following rules:
+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
*1(x, +(y, z)) → *1(x, z)
*1(x, +(y, z)) → *1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
*1(
x0,
x1,
x2) =
*1(
x0,
x2)
Tags:
*1 has argument tags [3,3,3] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
*1(
x1,
x2) =
*1(
x1,
x2)
+(
x1,
x2) =
+(
x1,
x2)
minus(
x1) =
x1
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial
Status:
*^12: [2,1]
+2: [2,1]
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
*1(x, minus(y)) → *1(x, y)
The TRS R consists of the following rules:
+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
*1(x, minus(y)) → *1(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
*1(
x0,
x1,
x2) =
*1(
x0)
Tags:
*1 has argument tags [1,2,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
*1(
x1,
x2) =
*1(
x2)
minus(
x1) =
minus(
x1)
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial
Status:
*^11: [1]
minus1: [1]
The following usable rules [FROCOS05] were oriented:
none
(14) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(16) TRUE