(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, y) → g(x, y)
g(h(x), y) → h(f(x, y))
g(h(x), y) → h(g(x, y))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(x, y) → G(x, y)
G(h(x), y) → F(x, y)
G(h(x), y) → G(x, y)
The TRS R consists of the following rules:
f(x, y) → g(x, y)
g(h(x), y) → h(f(x, y))
g(h(x), y) → h(g(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(x, y) → G(x, y)
G(h(x), y) → F(x, y)
G(h(x), y) → G(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x0,
x1,
x2) =
F(
x0,
x1,
x2)
G(
x0,
x1,
x2) =
G(
x0,
x2)
Tags:
F has argument tags [6,6,0] and root tag 0
G has argument tags [1,2,0] and root tag 0
Comparison: MS
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(F(x1, x2)) = 1 + x1
POL(G(x1, x2)) = 1 + x1
POL(h(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(4) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(x, y) → g(x, y)
g(h(x), y) → h(f(x, y))
g(h(x), y) → h(g(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(6) TRUE