(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(c(d(x))) → c(x)
u(b(d(d(x)))) → b(x)
v(a(a(x))) → u(v(x))
v(a(c(x))) → u(b(d(x)))
v(c(x)) → b(x)
w(a(a(x))) → u(w(x))
w(a(c(x))) → u(b(d(x)))
w(c(x)) → b(x)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
V(a(a(x))) → U(v(x))
V(a(a(x))) → V(x)
V(a(c(x))) → U(b(d(x)))
W(a(a(x))) → U(w(x))
W(a(a(x))) → W(x)
W(a(c(x))) → U(b(d(x)))
The TRS R consists of the following rules:
a(c(d(x))) → c(x)
u(b(d(d(x)))) → b(x)
v(a(a(x))) → u(v(x))
v(a(c(x))) → u(b(d(x)))
v(c(x)) → b(x)
w(a(a(x))) → u(w(x))
w(a(c(x))) → u(b(d(x)))
w(c(x)) → b(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
W(a(a(x))) → W(x)
The TRS R consists of the following rules:
a(c(d(x))) → c(x)
u(b(d(d(x)))) → b(x)
v(a(a(x))) → u(v(x))
v(a(c(x))) → u(b(d(x)))
v(c(x)) → b(x)
w(a(a(x))) → u(w(x))
w(a(c(x))) → u(b(d(x)))
w(c(x)) → b(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
W(a(a(x))) → W(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
W(
x0,
x1) =
W(
x1)
Tags:
W has argument tags [1,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
W(
x1) =
W
a(
x1) =
a(
x1)
Homeomorphic Embedding Order
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
a(c(d(x))) → c(x)
u(b(d(d(x)))) → b(x)
v(a(a(x))) → u(v(x))
v(a(c(x))) → u(b(d(x)))
v(c(x)) → b(x)
w(a(a(x))) → u(w(x))
w(a(c(x))) → u(b(d(x)))
w(c(x)) → b(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
V(a(a(x))) → V(x)
The TRS R consists of the following rules:
a(c(d(x))) → c(x)
u(b(d(d(x)))) → b(x)
v(a(a(x))) → u(v(x))
v(a(c(x))) → u(b(d(x)))
v(c(x)) → b(x)
w(a(a(x))) → u(w(x))
w(a(c(x))) → u(b(d(x)))
w(c(x)) → b(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
V(a(a(x))) → V(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
V(
x0,
x1) =
V(
x1)
Tags:
V has argument tags [1,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
V(
x1) =
V
a(
x1) =
a(
x1)
Homeomorphic Embedding Order
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
a(c(d(x))) → c(x)
u(b(d(d(x)))) → b(x)
v(a(a(x))) → u(v(x))
v(a(c(x))) → u(b(d(x)))
v(c(x)) → b(x)
w(a(a(x))) → u(w(x))
w(a(c(x))) → u(b(d(x)))
w(c(x)) → b(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(14) TRUE