(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

or(true, y) → true
or(x, true) → true
or(false, false) → false
mem(x, nil) → false
mem(x, set(y)) → =(x, y)
mem(x, union(y, z)) → or(mem(x, y), mem(x, z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEM(x, union(y, z)) → OR(mem(x, y), mem(x, z))
MEM(x, union(y, z)) → MEM(x, y)
MEM(x, union(y, z)) → MEM(x, z)

The TRS R consists of the following rules:

or(true, y) → true
or(x, true) → true
or(false, false) → false
mem(x, nil) → false
mem(x, set(y)) → =(x, y)
mem(x, union(y, z)) → or(mem(x, y), mem(x, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEM(x, union(y, z)) → MEM(x, z)
MEM(x, union(y, z)) → MEM(x, y)

The TRS R consists of the following rules:

or(true, y) → true
or(x, true) → true
or(false, false) → false
mem(x, nil) → false
mem(x, set(y)) → =(x, y)
mem(x, union(y, z)) → or(mem(x, y), mem(x, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MEM(x, union(y, z)) → MEM(x, z)
MEM(x, union(y, z)) → MEM(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MEM(x0, x1, x2)  =  MEM(x0, x1)

Tags:
MEM has argument tags [0,1,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Recursive path order with status [RPO].
Quasi-Precedence:
union2 > MEM2

Status:
MEM2: [2,1]
union2: multiset


The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

or(true, y) → true
or(x, true) → true
or(false, false) → false
mem(x, nil) → false
mem(x, set(y)) → =(x, y)
mem(x, union(y, z)) → or(mem(x, y), mem(x, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(8) TRUE