(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
rev(nil) → nil
rev(.(x, y)) → ++(rev(y), .(x, nil))
car(.(x, y)) → x
cdr(.(x, y)) → y
null(nil) → true
null(.(x, y)) → false
++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV(.(x, y)) → ++1(rev(y), .(x, nil))
REV(.(x, y)) → REV(y)
++1(.(x, y), z) → ++1(y, z)
The TRS R consists of the following rules:
rev(nil) → nil
rev(.(x, y)) → ++(rev(y), .(x, nil))
car(.(x, y)) → x
cdr(.(x, y)) → y
null(nil) → true
null(.(x, y)) → false
++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
++1(.(x, y), z) → ++1(y, z)
The TRS R consists of the following rules:
rev(nil) → nil
rev(.(x, y)) → ++(rev(y), .(x, nil))
car(.(x, y)) → x
cdr(.(x, y)) → y
null(nil) → true
null(.(x, y)) → false
++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
++1(.(x, y), z) → ++1(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
++1(
x1,
x2) =
++1(
x1)
Tags:
++1 has tags [1,0]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(.(x1, x2)) = 1 + x2
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
rev(nil) → nil
rev(.(x, y)) → ++(rev(y), .(x, nil))
car(.(x, y)) → x
cdr(.(x, y)) → y
null(nil) → true
null(.(x, y)) → false
++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV(.(x, y)) → REV(y)
The TRS R consists of the following rules:
rev(nil) → nil
rev(.(x, y)) → ++(rev(y), .(x, nil))
car(.(x, y)) → x
cdr(.(x, y)) → y
null(nil) → true
null(.(x, y)) → false
++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
REV(.(x, y)) → REV(y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
REV(
x1) =
REV(
x1)
Tags:
REV has tags [0]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(.(x1, x2)) = 1 + x2
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
rev(nil) → nil
rev(.(x, y)) → ++(rev(y), .(x, nil))
car(.(x, y)) → x
cdr(.(x, y)) → y
null(nil) → true
null(.(x, y)) → false
++(nil, y) → y
++(.(x, y), z) → .(x, ++(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(14) TRUE