(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(++(x, y), z) → ++(x, ++(y, z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

++1(.(x, y), z) → ++1(y, z)
++1(++(x, y), z) → ++1(x, ++(y, z))
++1(++(x, y), z) → ++1(y, z)

The TRS R consists of the following rules:

++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(++(x, y), z) → ++(x, ++(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


++1(.(x, y), z) → ++1(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
++1(x0, x1, x2)  =  ++1(x1)

Tags:
++1 has argument tags [0,0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(++(x1, x2)) = x1 + x2   
POL(++1(x1, x2)) = 0   
POL(.(x1, x2)) = 1 + x2   
POL(nil) = 0   

The following usable rules [FROCOS05] were oriented: none

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

++1(++(x, y), z) → ++1(x, ++(y, z))
++1(++(x, y), z) → ++1(y, z)

The TRS R consists of the following rules:

++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(++(x, y), z) → ++(x, ++(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


++1(++(x, y), z) → ++1(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
++1(x0, x1, x2)  =  ++1(x0)

Tags:
++1 has argument tags [0,0,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(++(x1, x2)) = 1 + x1 + x2   
POL(++1(x1, x2)) = x1 + x2   
POL(.(x1, x2)) = 0   
POL(nil) = 0   

The following usable rules [FROCOS05] were oriented:

++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(++(x, y), z) → ++(x, ++(y, z))

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

++1(++(x, y), z) → ++1(x, ++(y, z))

The TRS R consists of the following rules:

++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(++(x, y), z) → ++(x, ++(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


++1(++(x, y), z) → ++1(x, ++(y, z))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
++1(x0, x1, x2)  =  ++1(x1)

Tags:
++1 has argument tags [1,1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(++(x1, x2)) = 1 + x1   
POL(++1(x1, x2)) = 1   
POL(.(x1, x2)) = 0   
POL(nil) = 0   

The following usable rules [FROCOS05] were oriented: none

(8) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(++(x, y), z) → ++(x, ++(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(10) TRUE