0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 PisEmptyProof (⇔)
↳8 TRUE
implies(not(x), y) → or(x, y)
implies(not(x), or(y, z)) → implies(y, or(x, z))
implies(x, or(y, z)) → or(y, implies(x, z))
IMPLIES(not(x), or(y, z)) → IMPLIES(y, or(x, z))
IMPLIES(x, or(y, z)) → IMPLIES(x, z)
implies(not(x), y) → or(x, y)
implies(not(x), or(y, z)) → implies(y, or(x, z))
implies(x, or(y, z)) → or(y, implies(x, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IMPLIES(x, or(y, z)) → IMPLIES(x, z)
POL(IMPLIES(x1, x2)) = x2
POL(not(x1)) = 0
POL(or(x1, x2)) = 1 + x2
IMPLIES(not(x), or(y, z)) → IMPLIES(y, or(x, z))
implies(not(x), y) → or(x, y)
implies(not(x), or(y, z)) → implies(y, or(x, z))
implies(x, or(y, z)) → or(y, implies(x, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IMPLIES(not(x), or(y, z)) → IMPLIES(y, or(x, z))
POL(IMPLIES(x1, x2)) = x1 + x2
POL(not(x1)) = 1 + x1
POL(or(x1, x2)) = x1
implies(not(x), y) → or(x, y)
implies(not(x), or(y, z)) → implies(y, or(x, z))
implies(x, or(y, z)) → or(y, implies(x, z))