0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPSizeChangeProof (⇔)
↳6 TRUE
and(x, false) → false
and(x, not(false)) → x
not(not(x)) → x
implies(false, y) → not(false)
implies(x, false) → not(x)
implies(not(x), not(y)) → implies(y, and(x, y))
IMPLIES(false, y) → NOT(false)
IMPLIES(x, false) → NOT(x)
IMPLIES(not(x), not(y)) → IMPLIES(y, and(x, y))
IMPLIES(not(x), not(y)) → AND(x, y)
and(x, false) → false
and(x, not(false)) → x
not(not(x)) → x
implies(false, y) → not(false)
implies(x, false) → not(x)
implies(not(x), not(y)) → implies(y, and(x, y))
IMPLIES(not(x), not(y)) → IMPLIES(y, and(x, y))
and(x, false) → false
and(x, not(false)) → x
not(not(x)) → x
implies(false, y) → not(false)
implies(x, false) → not(x)
implies(not(x), not(y)) → implies(y, and(x, y))
Order:Combined order from the following AFS and order.
and(x1, x2) = x1
false = false
not(x1) = not(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
not1 > false
false: multiset
not1: multiset
AFS:
and(x1, x2) = x1
false = false
not(x1) = not(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
and(x, false) → false
and(x, not(false)) → x